

CS 4110

Programming Languages & Logics

Lecture 32
Shared-Memory Parallelism

21 November 2016

IMP with Parallel Composition

Here’s a simple model of shared-memory parallelism: let’s
extend IMP with a new a parallel composition command.

a ::= x | n | a1 + a2

b ::= true | false | a1 < a2

c ::= skip | x := a | c1; c2 | if b then c1 else c2 | while b do c
| c1 || c2

2

IMP with Parallel Composition

Here’s a simple model of shared-memory parallelism: let’s
extend IMP with a new a parallel composition command.

a ::= x | n | a1 + a2

b ::= true | false | a1 < a2

c ::= skip | x := a | c1; c2 | if b then c1 else c2 | while b do c
| c1 || c2

2

Operational Semantics

And add small-step operational semantics rules for c1 || c2 that
interleave the execution of c1 and c2:

⟨σ, c1⟩ → ⟨σ′, c′1⟩
⟨σ, c1 || c2⟩ → ⟨σ′, c′1 || c2⟩

⟨σ, c2⟩ → ⟨σ.′c′2⟩
⟨σ, c1 || c2⟩ → ⟨σ′, c1 || c′2⟩

⟨σ, skip || skip⟩ → ⟨σ, skip⟩

The rules allow either sub-command to take a step; two
sub-commands can interleave read and write operations
involving the same store.

3

Operational Semantics

And add small-step operational semantics rules for c1 || c2 that
interleave the execution of c1 and c2:

⟨σ, c1⟩ → ⟨σ′, c′1⟩
⟨σ, c1 || c2⟩ → ⟨σ′, c′1 || c2⟩

⟨σ, c2⟩ → ⟨σ.′c′2⟩
⟨σ, c1 || c2⟩ → ⟨σ′, c1 || c′2⟩

⟨σ, skip || skip⟩ → ⟨σ, skip⟩

The rules allow either sub-command to take a step; two
sub-commands can interleave read and write operations
involving the same store.

3

Operational Semantics

And add small-step operational semantics rules for c1 || c2 that
interleave the execution of c1 and c2:

⟨σ, c1⟩ → ⟨σ′, c′1⟩
⟨σ, c1 || c2⟩ → ⟨σ′, c′1 || c2⟩

⟨σ, c2⟩ → ⟨σ.′c′2⟩
⟨σ, c1 || c2⟩ → ⟨σ′, c1 || c′2⟩

⟨σ, skip || skip⟩ → ⟨σ, skip⟩

The rules allow either sub-command to take a step; two
sub-commands can interleave read and write operations
involving the same store.

3

Operational Semantics

And add small-step operational semantics rules for c1 || c2 that
interleave the execution of c1 and c2:

⟨σ, c1⟩ → ⟨σ′, c′1⟩
⟨σ, c1 || c2⟩ → ⟨σ′, c′1 || c2⟩

⟨σ, c2⟩ → ⟨σ.′c′2⟩
⟨σ, c1 || c2⟩ → ⟨σ′, c1 || c′2⟩

⟨σ, skip || skip⟩ → ⟨σ, skip⟩

The rules allow either sub-command to take a step; two
sub-commands can interleave read and write operations
involving the same store.

3

Parallel Bank Account

What happens if we deposit into a bank account twice under
parallel composition?

bal := 0;
(bal := bal+ 21.0 || bal := bal+ 21.0)

4

Synchronization

Languages have synchronization constructs that control the
interactions between threads.

Many languages have mutual exclusion, a.k.a. locking:

lock l;
bal := bal+ 21.0;
unlock l

A well-behaved alternative is transactional memory:

transaction {
bal := bal+ 21.0

}

5

Synchronization

Languages have synchronization constructs that control the
interactions between threads.

Many languages have mutual exclusion, a.k.a. locking:

lock l;
bal := bal+ 21.0;
unlock l

A well-behaved alternative is transactional memory:

transaction {
bal := bal+ 21.0

}

5

Reasoning About Shared Memory

This program reads and writes two shared variables from two
different “threads”:

x := 0; y := 0;
(y := 1; tmp1 := x) ||
(x := 1; tmp2 := y)

What can tmp1 and tmp2 be afterward?

6

Ordering Operations

x := 0

y := 0

y := 1

tmp1 := x

x := 1

tmp2 := y

print tmp1 and tmp2

7

Happens Before

The happens before relation is a partial order on events in a
program execution.

Operation a happens before b, written a → b, iff:
• a and b belong to the same thread and a comes before b in a
single-threaded execution, or

• a sends an inter-threadmessage that b receives.
(Also add transitivity: if a → b and b → c, then a → c.)

See also Lamport, 1978: “Time, Clocks and the Ordering of
Events in a Distributed System.”

8

Happens Before

The happens before relation is a partial order on events in a
program execution.

Operation a happens before b, written a → b, iff:
• a and b belong to the same thread and a comes before b in a
single-threaded execution, or

• a sends an inter-threadmessage that b receives.

(Also add transitivity: if a → b and b → c, then a → c.)

See also Lamport, 1978: “Time, Clocks and the Ordering of
Events in a Distributed System.”

8

Happens Before

The happens before relation is a partial order on events in a
program execution.

Operation a happens before b, written a → b, iff:
• a and b belong to the same thread and a comes before b in a
single-threaded execution, or

• a sends an inter-threadmessage that b receives.
(Also add transitivity: if a → b and b → c, then a → c.)

See also Lamport, 1978: “Time, Clocks and the Ordering of
Events in a Distributed System.”

8

Happens Before

In modern multithreaded programming, messages are sent and
received at synchronization events:
• unlock l → lock l
• fork t → first operation in thread t
• last operation in thread t → join t

9

Legal Executions

Which executions of a multi-threaded program are possible?

Model an execution as a total order a →e b on the same set of
events. For example:

y := 1 tmp1 := x x := 1 tmp2 := y

Then ask: is→ ⊆ →e? If so, then we say that→e is a
sequentially consistent execution.

Intuitively,→e is an interleaving that obeys→.

10

Legal Executions

Which executions of a multi-threaded program are possible?

Model an execution as a total order a →e b on the same set of
events. For example:

y := 1 tmp1 := x x := 1 tmp2 := y

Then ask: is→ ⊆ →e? If so, then we say that→e is a
sequentially consistent execution.

Intuitively,→e is an interleaving that obeys→.

10

Legal Executions

Which executions of a multi-threaded program are possible?

Model an execution as a total order a →e b on the same set of
events. For example:

y := 1 tmp1 := x x := 1 tmp2 := y

Then ask: is→ ⊆ →e? If so, then we say that→e is a
sequentially consistent execution.

Intuitively,→e is an interleaving that obeys→.

10

Legal Executions

Which executions of a multi-threaded program are possible?

Model an execution as a total order a →e b on the same set of
events. For example:

y := 1 tmp1 := x x := 1 tmp2 := y

Then ask: is→ ⊆ →e? If so, then we say that→e is a
sequentially consistent execution.

Intuitively,→e is an interleaving that obeys→.

10

Legal Executions

To see what a parallel program can do, we can enumerate all the
SC executions and “run” them:
• y := 1 → tmp1 := x → x := 1 → tmp2 := y

=⇒ tmp1 7→ 0, tmp2 7→ 1
• y := 1 → x := 1 → tmp1 := x → tmp2 := y
=⇒ tmp1 7→ 1, tmp2 7→ 1

• y := 1 → x := 1 → tmp2 := y → tmp1 := x
=⇒ tmp1 7→ 1, tmp2 7→ 1

• x := 1 → y := 1 → tmp2 := y → tmp1 := x
=⇒ tmp1 7→ 1, tmp2 7→ 1

• x := 1 → y := 1 → tmp1 := x → tmp2 := y
=⇒ tmp1 7→ 1, tmp2 7→ 1

• x := 1 → tmp2 := y → y := 1 → tmp1 := x
=⇒ tmp1 7→ 1, tmp2 7→ 0

11

Legal Executions

To see what a parallel program can do, we can enumerate all the
SC executions and “run” them:
• y := 1 → tmp1 := x → x := 1 → tmp2 := y
=⇒ tmp1 7→ 0, tmp2 7→ 1

• y := 1 → x := 1 → tmp1 := x → tmp2 := y
=⇒ tmp1 7→ 1, tmp2 7→ 1

• y := 1 → x := 1 → tmp2 := y → tmp1 := x
=⇒ tmp1 7→ 1, tmp2 7→ 1

• x := 1 → y := 1 → tmp2 := y → tmp1 := x
=⇒ tmp1 7→ 1, tmp2 7→ 1

• x := 1 → y := 1 → tmp1 := x → tmp2 := y
=⇒ tmp1 7→ 1, tmp2 7→ 1

• x := 1 → tmp2 := y → y := 1 → tmp1 := x
=⇒ tmp1 7→ 1, tmp2 7→ 0

11

Legal Executions

To see what a parallel program can do, we can enumerate all the
SC executions and “run” them:
• y := 1 → tmp1 := x → x := 1 → tmp2 := y
=⇒ tmp1 7→ 0, tmp2 7→ 1

• y := 1 → x := 1 → tmp1 := x → tmp2 := y
=⇒ tmp1 7→ 1, tmp2 7→ 1

• y := 1 → x := 1 → tmp2 := y → tmp1 := x
=⇒ tmp1 7→ 1, tmp2 7→ 1

• x := 1 → y := 1 → tmp2 := y → tmp1 := x
=⇒ tmp1 7→ 1, tmp2 7→ 1

• x := 1 → y := 1 → tmp1 := x → tmp2 := y
=⇒ tmp1 7→ 1, tmp2 7→ 1

• x := 1 → tmp2 := y → y := 1 → tmp1 := x
=⇒ tmp1 7→ 1, tmp2 7→ 0

11

Legal Executions

To see what a parallel program can do, we can enumerate all the
SC executions and “run” them:
• y := 1 → tmp1 := x → x := 1 → tmp2 := y
=⇒ tmp1 7→ 0, tmp2 7→ 1

• y := 1 → x := 1 → tmp1 := x → tmp2 := y
=⇒ tmp1 7→ 1, tmp2 7→ 1

• y := 1 → x := 1 → tmp2 := y → tmp1 := x
=⇒ tmp1 7→ 1, tmp2 7→ 1

• x := 1 → y := 1 → tmp2 := y → tmp1 := x
=⇒ tmp1 7→ 1, tmp2 7→ 1

• x := 1 → y := 1 → tmp1 := x → tmp2 := y
=⇒ tmp1 7→ 1, tmp2 7→ 1

• x := 1 → tmp2 := y → y := 1 → tmp1 := x
=⇒ tmp1 7→ 1, tmp2 7→ 0

11

Legal Executions

Enumerating SC executions gets old fast, but lets us produce the
set of possible final stores, σ:

{tmp1 7→ 0, tmp2 7→ 1}
{tmp1 7→ 1, tmp2 7→ 1}
{tmp1 7→ 1, tmp2 7→ 0}

So no sequentially consitent execution makes both tmp1 and
tmp2 equal to zero.

12

That Same Program, in C

volatile int x, y, tmp1, tmp2;

// Thread 0: write x and read y.
void *t0(void *arg) {

x = 1;
tmp1 = y;
return 0;

}

// Thread 1, the opposite: write y and read x.
void *t1(void *arg) {

y = 1;
tmp2 = x;
return 0;

} 13

That Same Program, in C

void main() {
x = y = tmp1 = tmp2 = 0;

// Launch both threads.
pthread_t thread0, thread1;
pthread_create(&thread0, NULL, t0, NULL);
pthread_create(&thread1, NULL, t1, NULL);

// Wait for both threads to finish.
pthread_join(thread0, NULL);
pthread_join(thread1, NULL);

printf("%d␣%d\n", tmp1, tmp2);
}

14

Weak Memory Models

No real parallel machine enforces sequential consistency!

There are many reasons and/or excuses:
• Per-processor caching lets each CPU read values that other
processors can’t see yet.

• Private write buffers are critical for good performance with
coherent caches.

• Lots of “obvious” compiler optimizations violate sequential
consistency.

See also Boehm, 2005: “Threads cannot be implemented as a
library.”

15

Weak Memory Models

No real parallel machine enforces sequential consistency!

There are many reasons and/or excuses:
• Per-processor caching lets each CPU read values that other
processors can’t see yet.

• Private write buffers are critical for good performance with
coherent caches.

• Lots of “obvious” compiler optimizations violate sequential
consistency.

See also Boehm, 2005: “Threads cannot be implemented as a
library.”

15

Weak Memory Models

Every machine (and every programming language) as a memory
model. Memory models describe the set of legal executions.

Sequential consistency is the strongestmemory model out
there: it allows the fewest different executions.

Real machines and languages haveweakermemory models:

SC ≥ x86 ≥ ARM ≥ C/C++ ≥ DRF0

16

Weak Memory Models

Every machine (and every programming language) as a memory
model. Memory models describe the set of legal executions.

Sequential consistency is the strongestmemory model out
there: it allows the fewest different executions.

Real machines and languages haveweakermemory models:

SC ≥ x86 ≥ ARM ≥ C/C++ ≥ DRF0

16

Data Races

A data race occurs when:
• There are two events a and b that are unordered in the
happens-before relation (a ↛ b and b ↛ a),

• both events access the same shared variable, and
• one or both of a and b is a write.

Our little example has two data races: one on x and one on y.

17

Data Races

A data race occurs when:
• There are two events a and b that are unordered in the
happens-before relation (a ↛ b and b ↛ a),

• both events access the same shared variable, and
• one or both of a and b is a write.

Our little example has two data races: one on x and one on y.

17

Data Races & Memory Models

Languages have recently agreed on one critical property:

data race free ⇒ sequentially consistent

As long as you avoid data races, you get sequential consistency
on anymachine in Java, C, and C++.

(In jargon: the DRF implies SC theorem.)

Languages still disagree about what happens when you do have
a race. In C and C++, races allow undefined behavior.

18

Data Races & Memory Models

Languages have recently agreed on one critical property:

data race free ⇒ sequentially consistent

As long as you avoid data races, you get sequential consistency
on anymachine in Java, C, and C++.

(In jargon: the DRF implies SC theorem.)

Languages still disagree about what happens when you do have
a race. In C and C++, races allow undefined behavior.

18

Race-Free Programming

Data race detection is an active field of research.

One called ThreadSanitizer is included with recent Clang and
GCC compilers:

$ cc -g -fsanitize=thread simple_race.c
$./a.out
WARNING: ThreadSanitizer: data race (pid=26327)
Write of size 4 at 0x7f89554701d0 by thread T1:
#0 Thread1(void*) simple_race.cc:8

Previous write of size 4 at 0x7f89554701d0 by thread T2:
#0 Thread2(void*) simple_race.cc:13

19

