
 

CS 4110

Programming Languages & Logics

Lecture 31
Concurrency & Parallelism

14 November 2016



Announcements

• Homework #8 returned: x = 62.4/72, σ = 11.4
• Preliminary Exam II on Wednesday!

2



Concurrency and Parallelism

Our languages have so far been “single threaded,” but all
modern machines are parallel.

PL support for concurrency/parallelism a huge topic:
• Sharedmemory (locks and transactions)
• Futures
• Message passing
• Process calculi (foundational message-passing)
• Asynchronous methods, join calculus, ...
• Data-parallel languages (e.g., NESL or ZPL)
• ...

We’ll focus onmessage passing and sharedmemory.

3



Concurrency vs. Parallelism

Concurrency is about correctly and efficiently managing access
to shared resources.
Examples: operating system, shared hashtable, version
control…

Parallelism is about using extra computational resources to do
more useful work per unit time
Examples: scientific computing, most graphics, a lot of servers…

4



Message Passing

In languages withmessage passing, threads communicate via
send and receive along channels.

In synchronousmessage-passing, execution blocks until
communication takes place.

5



Concurrent ML

Concurrent ML is synchronous message-passing with first-class
synchronization events.

It’s a great match of lambdas and polymorphic types in OCaml.
Also available in:
• Standard ML (originally)
• Racket
• Haskell
• Go (sort of)
• ...

6



Concurrent ML

type 'a channel (* messages passed on channels *)
val new_channel : unit -> 'a channel

type 'a event (* when sync'ed on, get an 'a *)
val send : 'a channel -> 'a -> unit event
val receive : 'a channel -> 'a event
val sync : 'a event -> 'a

Send and receive return “events” immediately.

Sync blocks until the event “happens.”

7



Concurrent ML

Can define helper functions by trivial composition:

let sendNow ch a = sync (send ch a) (* block *)
let recvNow ch = sync (receive ch) (* block *)

“Who communicates” is up to the CML implementation:
• Can be nondeterministic when there are multiple
senders/receivers on the same channel.

• Implementation needs collection of waiting senders xor
receivers.

8



Bank Account Example

See code31.ml

• First version: channels are the only way to access a private
reference.

• Second version: makes functional programmers smile.

Hints at a deep connection between channels and shared
memory.

9



The Interface

In the example, all the threading and communication gets
abstracted away:

type acct
val mkAcct : unit -> acct
val get : acct -> float -> float
val put : acct -> float -> float

Hidden thread communication:
• mkAcctmakes a thread (the “this account server”)
• get and putmake the server go around the loop once

There are no races between concurrent accesses by
construction: the server handles one request at a time.

10



Streams

We can also use CML to code up streams: infinite sequences of
values, produced lazily.

See code31.ml

11



The Need for Choice

So far, sendNow and recvNow have worked just fine. When do
you need a separate sync operation?

add : int channel -> int channel -> int

An “add server” would need to choose which to receive first,
which hurts performance if the other operand is ready first.

or : bool channel -> bool channel -> bool

Can’t “short circuit” when the first operand arrives.

12



The Need for Choice

So far, sendNow and recvNow have worked just fine. When do
you need a separate sync operation?

add : int channel -> int channel -> int

An “add server” would need to choose which to receive first,
which hurts performance if the other operand is ready first.

or : bool channel -> bool channel -> bool

Can’t “short circuit” when the first operand arrives.

12



The Need for Choice

So far, sendNow and recvNow have worked just fine. When do
you need a separate sync operation?

add : int channel -> int channel -> int

An “add server” would need to choose which to receive first,
which hurts performance if the other operand is ready first.

or : bool channel -> bool channel -> bool

Can’t “short circuit” when the first operand arrives.

12



Choose and Wrap

type 'a event (* when sync'ed on, get an 'a *)
val send : 'a channel -> 'a -> unit event
val receive : 'a channel -> 'a event
val sync : 'a event -> 'a

val choose : 'a event list -> 'a event
val wrap : 'a event -> ('a -> 'b) -> 'b event

• choose: When synchronized on, block until one of the events
happen (c.f. UNIX select).

• wrap: A new event with the function as post-processing.

13



Next Time

Shared-memory multithreading: less elegant, more popular,
and far more terrifying!

14


