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Announcements

e HW #7 due tonight at 11:59pm
e HW #8 out now

e After that, no homework until after Prelim Il
(and after Thanksgiving)



Namespaces

It’s no fun to program in a language with a single, global
namespace: C, FORTRAN, and PHP until depressingly recently.



Namespaces

It’s no fun to program in a language with a single, global
namespace: C, FORTRAN, and PHP until depressingly recently.

Components of a large program have to worry about name
collisions.

And components become tightly coupled: any component can
use a name defined by any other.



Modularity

A module is a collection of named entities that are related.

Modules provide separate namespaces: different modules can
use the same names without worrying about collisions.

Modules can:
e Choose which names to export

e Choose which names to keep hidden
e Hide implementation details
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Existential Types

In the polymorphic A-calculus, we introduced universal
quantification for types.

To=- | X|VXT
If we have V, why not 37 What would existential type
quantification do?

o= | X|3X T

(6]
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Existential Types

Together with records, existential types let us hide the
implementation details of an interface.

3 Counter.
{ new : Counter,
get : Counter — int,
inc : Counter — Counter }

Here, the witness type might be int:

{ new : int,
get : int — int,
inc : int — int }



Existential Types

Let’s extend our STLC with existential types:

T = int
| 71— 7
[{l:m,. . T }
| 3IX. 7
| X
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Syntax & Dynamic Semantics

We'll tag the values of existential types with the witness type.

Avalue has type 3 X. 7 is a pair {7/, v}
where v has type 7{7'/X}.

We’ll add new operations to construct and destruct these pairs:

pack {r,e}asIX.

unpack {X,x} = e; in e,



Syntax

e.=X

| M. e

| e e,

| n

el + e,
|[{h=e1,....[h=e,}

| e.l

| pack {m,e} as IX. 1

| unpack {X,x} =e;ine,

=n

| M:T.e
|{[l:V17~~;[n:Vn}
| pack {1,v} as IX.



Dynamic Semantics

E:=...
| pack {r,E}as3I X.
| unpack {X,x} =Eine

unpack {X,x} = (pack {r,v}as3VY.n)ine — e{v/x}{r/X}
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Static Semantics

AT Fe:n{n/X}

AT Fpack{r,e}asIX. n:IX. 1,
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Static Semantics

AT Fe:n{n/X}
AT Fpack{r,e}asIX. n:IX. 1,

ATkFe:3Xnn AU{XLT ximmbern, AbF ok

AT Funpack {X,x} =ejine;:n,

The side condition A - 7, ok ensures that the existentially
quantified type variable X does not appear free in 7.
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Example

let counterADT =
pack { int,
{new =0,
get = \i:int. |,
inc= \Aicint.i4+1}}
as
3 Counter.

{ new : Counter,
get : Counter — int,
inc : Counter — Counter}
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Example

Here’s how to use the existential value counterADT:

unpack {T, c} = counterADT in
lety = c.newin
c.get (c.inc(c.incy))
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Representation Independence

We can define alternate, equivalent implementations of our
counter...

let counterADT =
pack {{x:int},
{new = {x = 0},
get = Ar:{x:int}.r.x,
inc = Ar:{x:int}.rx+1}}
as
dCounter.
{ new : Counter,
get : Counter — int,
inc : Counter — Counter}



Existentials and Type Variables

In the typing rule for unpack, the side condition A - 7, ok
prevents type variables from “leaking out” of unpack
expressions.



Existentials and Type Variables

In the typing rule for unpack, the side condition A - 7, ok
prevents type variables from “leaking out” of unpack
expressions.

This rules out programs like this:
letm =
pack {int,{a =5,f= M\x:int. x + 1}} as I X. {a: X, f: X — X}
in

unpack {T,x} = min x.fx.a

where the type of x.fx.ais just T.



Encoding Existentials

We can encode existentials using universals!

The idea is to use a Church encoding where an existential value
is a function that takes a type and then calls a continuation.
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Encoding Existentials

We can encode existentials using universals!

The idea is to use a Church encoding where an existential value
is a function that takes a type and then calls a continuation.

KT & W (XT Y)Y
pack {r,e}as .7, 2 AV Af: (VX = V). f[n]e

unpack {X,x} =ejine, = e, [n](M\:1.e)

where e; has type 3X.7; and e, has type 7,



