CS4110

Programming Languages & Logics

Lecture 26
Existential Types

2 November 2016

Announcements

e HW #7 due tonight at 11:59pm
e HW #8 out now

e After that, no homework until after Prelim Il
(and after Thanksgiving)

Namespaces

It’s no fun to program in a language with a single, global
namespace: C, FORTRAN, and PHP until depressingly recently.

Namespaces

It’s no fun to program in a language with a single, global
namespace: C, FORTRAN, and PHP until depressingly recently.

Components of a large program have to worry about name
collisions.

And components become tightly coupled: any component can
use a name defined by any other.

Modularity

A module is a collection of named entities that are related.

Modules provide separate namespaces: different modules can
use the same names without worrying about collisions.

Modules can:
e Choose which names to export

e Choose which names to keep hidden
e Hide implementation details

Existential Types

In the polymorphic A-calculus, we introduced universal
quantification for types.

To=- | X|VXT

Existential Types

In the polymorphic A-calculus, we introduced universal
quantification for types.

To=- | X|VXT
If we have V, why not 37 What would existential type
quantification do?

o= | X|3X T

(6]

Existential Types

Together with records, existential types let us hide the
implementation details of an interface.

Existential Types

Together with records, existential types let us hide the
implementation details of an interface.

3 Counter.
{ new : Counter,
get : Counter — int,
inc : Counter — Counter }

Existential Types

Together with records, existential types let us hide the
implementation details of an interface.

3 Counter.
{ new : Counter,
get : Counter — int,
inc : Counter — Counter }

Here, the witness type might be int:

{ new : int,
get : int — int,
inc : int — int }

Existential Types

Let’s extend our STLC with existential types:

T = int
| 71— 7
[{l:m,. . T }
| 3IX. 7
| X

Syntax & Dynamic Semantics

We'll tag the values of existential types with the witness type.

Syntax & Dynamic Semantics

We'll tag the values of existential types with the witness type.

Avalue has type 3 X. 7 is a pair {7/, v}
where v has type 7{7'/X}.

Syntax & Dynamic Semantics

We'll tag the values of existential types with the witness type.

Avalue has type 3 X. 7 is a pair {7/, v}
where v has type 7{7'/X}.

We’ll add new operations to construct and destruct these pairs:

pack {r,e}asIX.

unpack {X,x} = e; in e,

Syntax

e.=X

| M. e

| e e,

| n

el + e,
|[{h=e1,....[h=e,}

| e.l

| pack {m,e} as IX. 1

| unpack {X,x} =e;ine,

=n

| M:T.e
|{[l:V17~~;[n:Vn}
| pack {1,v} as IX.

Dynamic Semantics

E:=...
| pack {r,E}as3I X.
| unpack {X,x} =Eine

unpack {X,x} = (pack {r,v}as3VY.n)ine — e{v/x}{r/X}

10

Static Semantics

AT Fe:n{n/X}

AT Fpack{r,e}asIX. n:IX. 1,

11

Static Semantics

AT Fe:n{n/X}
AT Fpack{r,e}asIX. n:IX. 1,

ATkFe:3Xnn AU{XLT ximmbern, AbF ok

AT Funpack {X,x} =ejine;:n,

The side condition A - 7, ok ensures that the existentially
quantified type variable X does not appear free in 7.

11

Example

let counterADT =
pack { int,
{new =0,
get = \i:int. |,
inc= \Aicint.i4+1}}
as
3 Counter.

{ new : Counter,
get : Counter — int,
inc : Counter — Counter}

12

Example

Here’s how to use the existential value counterADT:

unpack {T, c} = counterADT in
lety = c.newin
c.get (c.inc(c.incy))

13

Representation Independence

We can define alternate, equivalent implementations of our
counter...

let counterADT =
pack {{x:int},
{new = {x = 0},
get = Ar:{x:int}.r.x,
inc = Ar:{x:int}.rx+1}}
as
dCounter.
{ new : Counter,
get : Counter — int,
inc : Counter — Counter}

Existentials and Type Variables

In the typing rule for unpack, the side condition A - 7, ok
prevents type variables from “leaking out” of unpack
expressions.

Existentials and Type Variables

In the typing rule for unpack, the side condition A - 7, ok
prevents type variables from “leaking out” of unpack
expressions.

This rules out programs like this:
letm =
pack {int,{a =5,f= M\x:int. x + 1}} as I X. {a: X, f: X — X}
in

unpack {T,x} = min x.fx.a

where the type of x.fx.ais just T.

Encoding Existentials

We can encode existentials using universals!

The idea is to use a Church encoding where an existential value
is a function that takes a type and then calls a continuation.

16

Encoding Existentials

We can encode existentials using universals!

The idea is to use a Church encoding where an existential value
is a function that takes a type and then calls a continuation.

KT & W (XT Y)Y
pack {r,e}as .7, 2 AV Af: (VX = V). f[n]e

unpack {X,x} =ejine, = e, [n](M\:1.e)

where e; has type 3X.7; and e, has type 7,

