CS 4110

Programming Languages \& Logics

Lecture 25
 Records and Subtyping

31 October 2016

Announcements

- Homework 6 returned: $\bar{x}=34$ of $37, \sigma=3.8$
- Preliminary Exam II in class on Wednesday, November 16
- New date! Please email me as soon as you can if you have a conflict.
- Topics: λ-calculus through subtyping (today)
- Not cumulative (unlike the final)
- Practice problems available on CMS now

Records

We've seen binary products (pairs), and they generalize to n-ary products (tuples).

Records are a generalization of tuples where we mark each field with a label.

Records

We've seen binary products (pairs), and they generalize to n-ary products (tuples).

Records are a generalization of tuples where we mark each field with a label.

Example:

$$
\{\mathrm{foo}=32, \mathrm{bar}=\operatorname{true}\}
$$

is a record value with an integer field foo and a boolean field bar.

Records

We've seen binary products (pairs), and they generalize to n-ary products (tuples).

Records are a generalization of tuples where we mark each field with a label.

Example:
$\{\mathrm{foo}=32, \mathrm{bar}=$ true $\}$
is a record value with an integer field foo and a boolean field bar.
Its type is:
\{foo: int, bar:bool\}

Syntax

$$
\begin{aligned}
& l \in \mathcal{L} \\
& e::=\cdots\left|\left\{l_{1}=e_{1}, \ldots, l_{n}=e_{n}\right\}\right| e . l \\
& v::=\cdots \mid\left\{l_{1}=v_{1}, \ldots, l_{n}=v_{n}\right\} \\
& \tau::=\cdots \mid\left\{l_{1}: \tau_{1}, \ldots, l_{n}: \tau_{n}\right\}
\end{aligned}
$$

Dynamic Semantics

$$
\begin{aligned}
E:: & =\ldots \\
& \mid\left\{l_{1}=v_{1}, \ldots, l_{i-1}=v_{i-1}, l_{i}=E, l_{i+1}=e_{i+1}, \ldots, l_{n}=e_{n}\right\} \\
& \mid E . l
\end{aligned}
$$

$$
\overline{\left\{l_{1}=v_{1}, \ldots, l_{n}=v_{n}\right\} . l_{i} \rightarrow v_{i}}
$$

Static Semantics

$$
\begin{gathered}
\left.\frac{\forall i \in 1 . . n . \Gamma \vdash e_{i}: \tau_{i}}{\Gamma \vdash\left\{l_{1}=\right.} e_{1}, \ldots, l_{n}=e_{n}\right\}:\left\{l_{1}: \tau_{1}, \ldots, l_{n}: \tau_{n}\right\} \\
\frac{\Gamma \vdash e:\left\{l_{1}: \tau_{1}, \ldots, l_{n}: \tau_{n}\right\}}{\Gamma \vdash e . l_{i}: \tau_{i}}
\end{gathered}
$$

Example

GETX $\triangleq \lambda p:\{\mathrm{x}: \mathbf{i n t}, \mathrm{y}: \mathbf{i n t}\} . p . \mathrm{x}$

Example

GETX $\triangleq \lambda p:\{\mathrm{x}: \mathbf{i n t}, \mathrm{y}: \mathbf{i n t}\} . p . \mathrm{x}$

$$
\operatorname{GETX}\{x=4, y=2\}
$$

Example

GETX $\triangleq \lambda p:\{\mathrm{x}: \mathbf{i n t}, \mathrm{y}: \mathbf{i n t}\} . p . \mathrm{x}$

$$
\operatorname{GETX}\{x=4, y=2\}
$$

GETX $\{x=4, y=2, z=42\}$

Example

GETX $\triangleq \lambda p:\{\mathrm{x}: \mathbf{i n t}, \mathrm{y}: \mathbf{i n t}\} . p . \mathrm{x}$

$$
\operatorname{GETX}\{x=4, y=2\}
$$

$$
\operatorname{GETX}\{x=4, y=2, z=42\}
$$

$$
\operatorname{GETX}\{y=2, x=4\}
$$

Subtyping

Definition (Subtype)

τ_{1} is a subtype of τ_{2}, written $\tau_{1} \leq \tau_{2}$, if a program can use a value of type τ_{1} whenever it would use a value of type τ_{2}.

If $\tau_{1} \leq \tau_{2}$, we also say τ_{2} is the supertype of τ_{1}.

Subtyping

Definition (Subtype)

τ_{1} is a subtype of τ_{2}, written $\tau_{1} \leq \tau_{2}$, if a program can use a value of type τ_{1} whenever it would use a value of type τ_{2}.

If $\tau_{1} \leq \tau_{2}$, we also say τ_{2} is the supertype of τ_{1}.

$$
\frac{\Gamma \vdash e: \tau \quad \tau \leq \tau^{\prime}}{\Gamma \vdash e: \tau^{\prime}} \text { SUBSUMPTION }
$$

This typing rule says that if e has type τ and τ is a subtype of τ^{\prime}, then e also has type τ^{\prime}.

Record Subtyping

We'll define a new subtyping relation that works together with the subsumption rule.

$$
\tau_{1} \leq \tau_{2}
$$

Record Subtyping

This program isn't well-typed (yet):

$$
(\lambda p:\{x: \text { int }\} \cdot p \cdot x)\{x=4, \mathrm{y}=2\}
$$

Record Subtyping

This program isn't well-typed (yet):

$$
(\lambda p:\{x: \text { int }\} \cdot p \cdot x)\{x=4, y=2\}
$$

So let's add width subtyping:

$$
\frac{k \geq 0}{\left\{l_{1}: \tau_{1}, \ldots, l_{n+k}: \tau_{n+k}\right\} \leq\left\{l_{1}: \tau_{1}, \ldots, l_{n}: \tau_{n}\right\}}
$$

Record Subtyping

This program also doesn't get stuck:

$$
(\lambda p:\{\mathrm{x}: \text { int }, \mathrm{y}: \text { int }\} \cdot p \cdot \mathrm{x}+p \cdot \mathrm{y})\{\mathrm{y}=37, \mathrm{x}=5\}
$$

Record Subtyping

This program also doesn't get stuck:

$$
(\lambda p:\{\mathrm{x}: \text { int }, \mathrm{y}: \text { int }\} \cdot p \cdot \mathrm{x}+p \cdot \mathrm{y})\{\mathrm{y}=37, \mathrm{x}=5\}
$$

So we can make it well-typed by adding permutation subtyping:
π is a permutation on $1 . . n$

$$
\left\{l_{1}: \tau_{1}, \ldots, l_{n}: \tau_{n}\right\} \leq\left\{l_{\pi(1)}: \tau_{\pi(1)}, \ldots, l_{\pi(n)}: \tau_{\pi(n)}\right\}
$$

Record Subtyping

Does this program get stuck? Is it well-typed?

$$
(\lambda p:\{\mathrm{x}:\{\mathrm{y}: \operatorname{int}\}\} \cdot p \cdot \mathrm{x} \cdot \mathrm{y})\{\mathrm{x}=\{\mathrm{y}=4, \mathrm{z}=2\}\}
$$

Record Subtyping

Does this program get stuck? Is it well-typed?

$$
(\lambda p:\{\mathrm{x}:\{\mathrm{y}: \operatorname{int}\}\} \cdot p \cdot \mathrm{x} \cdot \mathrm{y})\{\mathrm{x}=\{\mathrm{y}=4, \mathrm{z}=2\}\}
$$

Let's add depth subtyping:

$$
\frac{\forall i \in 1 . . n . \quad \tau_{i} \leq \tau_{i}^{\prime}}{\left\{l_{1}: \tau_{1}, \ldots, l_{n}: \tau_{n}\right\} \leq\left\{l_{1}: \tau_{1}, \ldots, l_{n}: \tau_{n}\right\}}
$$

Record Subtyping

Putting all three forms of record subtyping together:

$$
\frac{\forall i \in 1 . . n . \exists j \in 1 . . m . \quad l_{i}^{\prime}=l_{j} \wedge \tau_{j} \leq \tau_{i}^{\prime}}{\left\{l_{1}: \tau_{1}, \ldots, l_{m}: \tau_{m}\right\} \leq\left\{l_{1}^{\prime}: \tau_{1}^{\prime}, \ldots, l_{n}^{\prime}: \tau_{n}^{\prime}\right\}} \text { S-RECORD }
$$

Standard Subtyping Rules

We always make the subtyping relation both reflexive and transitive.

$$
\frac{}{\tau \leq \tau} \mathrm{S}-\mathrm{REFL} \quad \frac{\tau_{1} \leq \tau_{2} \quad \tau_{2} \leq \tau_{3}}{\tau_{1} \leq \tau_{3}} \text { S-TRANS }
$$

Think of every type describing a set of values. Then $\tau_{1} \leq \tau_{2}$ when τ_{1} 's values are a subset of τ_{2} 's.

Top Type

It's sometimes useful to define a maximal type with respect to subtyping:

$$
\begin{aligned}
& \tau::=\cdots \mid \top \\
& \overline{\tau \leq \top} \text { S-TOP }
\end{aligned}
$$

Everything is a subtype of \top, as in Java's Object or Go's interface\{\}.

Subtype All the Things!

We can also write subtyping rules for sums and products:

$$
\frac{\tau_{1} \leq \tau_{1}^{\prime} \quad \tau_{2} \leq \tau_{2}^{\prime}}{\tau_{1}+\tau_{2} \leq \tau_{1}^{\prime}+\tau_{2}^{\prime}} \text { S-SuM }
$$

Subtype All the Things!

We can also write subtyping rules for sums and products:

$$
\begin{gathered}
\frac{\tau_{1} \leq \tau_{1}^{\prime} \quad \tau_{2} \leq \tau_{2}^{\prime}}{\tau_{1}+\tau_{2} \leq \tau_{1}^{\prime}+\tau_{2}^{\prime}} \text { S-SUM } \\
\frac{\tau_{1} \leq \tau_{1}^{\prime} \quad \tau_{2} \leq \tau_{2}^{\prime}}{\tau_{1} \times \tau_{2} \leq \tau_{1}^{\prime} \times \tau_{2}^{\prime}} \text { S-PRODUCT }
\end{gathered}
$$

Function Types

How should we decide whether one function type is a subtype of another?

$$
\frac{? ? ?}{\tau_{1} \rightarrow \tau_{2} \leq \tau_{1}^{\prime} \rightarrow \tau_{2}^{\prime}} \text { S-FUNCTION }
$$

Desiderata

We'd like to have:

$$
\text { int } \rightarrow\{x: \text { int }, \mathrm{y}: \text { int }\} \leq \text { int } \rightarrow\{\mathrm{x}: \text { int }\}
$$

Desiderata

We'd like to have:

$$
\text { int } \rightarrow\{x: \text { int }, \mathrm{y}: \text { int }\} \leq \text { int } \rightarrow\{\mathrm{x}: \text { int }\}
$$

And:

$$
\{x: \text { int }\} \rightarrow \text { int } \leq\{x: \text { int }, y: \text { int }\} \rightarrow \text { int }
$$

Desiderata

We'd like to have:

$$
\text { int } \rightarrow\{x: \text { int }, \mathrm{y}: \text { int }\} \leq \text { int } \rightarrow\{\mathrm{x}: \text { int }\}
$$

And:

$$
\{x: \text { int }\} \rightarrow \text { int } \leq\{x: \text { int }, y: \text { int }\} \rightarrow \text { int }
$$

In general, to prove:

$$
\tau_{1} \rightarrow \tau_{2} \leq \tau_{1}^{\prime} \rightarrow \tau_{2}^{\prime}
$$

we'll require:

- Argument types are contravariant: $\tau_{1}^{\prime} \leq \tau_{1}$
- Return types are covariant: $\tau_{2} \leq \tau_{2}^{\prime}$

Function Subtyping

Putting these two pieces together, we get the subtyping rule for function types:

$$
\frac{\tau_{1}^{\prime} \leq \tau_{1} \quad \tau_{2} \leq \tau_{2}^{\prime}}{\tau_{1} \rightarrow \tau_{2} \leq \tau_{1}^{\prime} \rightarrow \tau_{2}^{\prime}} \text { S-FUNCTION }
$$

Reference Subtyping

What should the relationship be between τ and τ^{\prime} in order to have τ ref $\leq \tau^{\prime}$ ref?

Example

If r^{\prime} has type τ^{\prime} ref, then ${ }^{\prime} r^{\prime}$ has type τ^{\prime}.
Imagine we replace r^{\prime} with r, where r has a type τ ref that we've somehow decided is a subtype of τ^{\prime} ref.

Example

If r^{\prime} has type τ^{\prime} ref, then ${ }^{\prime} r^{\prime}$ has type τ^{\prime}.
Imagine we replace r^{\prime} with r, where r has a type τ ref that we've somehow decided is a subtype of τ^{\prime} ref.

Then $!r$ should still produce something can be treated as a τ^{\prime}. In other words, it should have a type that is a subtype of τ^{\prime}.

So the referent type should be covariant:

$$
\frac{\tau \leq \tau^{\prime}}{\tau \text { ref } \leq \tau^{\prime} \text { ref }}
$$

Example

If v has type τ^{\prime}, then $r^{\prime}:=v^{\prime}$ should be legal.
If we replace r^{\prime} with r, then it must still be legal to assign $r:=v$. So ! r would then produce a value of type τ^{\prime}.

Example

If v has type τ^{\prime}, then $r^{\prime}:=v^{\prime}$ should be legal.
If we replace r^{\prime} with r, then it must still be legal to assign $r:=v$.
So !r would then produce a value of type τ^{\prime}.
So the referent type should be contravariant!

$$
\frac{\tau^{\prime} \leq \tau}{\tau \text { ref } \leq \tau^{\prime} \mathbf{r e f}}
$$

Reference Subtyping

In fact, subtyping for reference types must be invariant: a reference type τ ref is a subtype of τ^{\prime} ref if and only if $\tau \leq \tau^{\prime}$ and $\tau^{\prime} \leq \tau$.

$$
\frac{\tau \leq \tau^{\prime} \quad \tau^{\prime} \leq \tau}{\tau \boldsymbol{\operatorname { r e f }} \leq \tau^{\prime} \boldsymbol{\operatorname { r e f }}} \text { S-REF }
$$

Java Arrays

Tragically, Java's mutable arrays use covariant subtyping!

Java Arrays

Tragically, Java's mutable arrays use covariant subtyping!
Suppose that Cow is a subtype of Animal.
Code that only reads from arrays typechecks:
Animal[] arr $=$ new Cow[] \{new Cow("Alfonso") \};
Animala $=\operatorname{arr}[0]$;

Java Arrays

Tragically, Java's mutable arrays use covariant subtyping!
Suppose that Cow is a subtype of Animal.
Code that only reads from arrays typechecks:

$$
\begin{aligned}
& \text { Animal[] arr }=\text { new Cow[] \{ new Cow("Alfonso") }\} \text {; } \\
& \text { Animal a }=\operatorname{arr}[0] ;
\end{aligned}
$$

but writing to the array can get into trouble:

$$
\operatorname{arr}[0]=\text { new Animal("Brunhilda"); }
$$

Specifically, this generates an ArrayStoreException.

