

CS 4110

Programming Languages & Logics

Lecture 24
Compiling with Continuations

28 October 2016

Continuations

We’ve seen continuations several times in this course already:
• As a way to implement break and continue
• As a way to make definitional translation more robust
• As an intermediate language in interpreters

Now, we’ll use them to translate a functional language down to
an assembly-like language.

The translation works as a recipe for compiling any of the
features we have discussed over the past few weeks all the way
down to hardware.

2

Continuations

We’ve seen continuations several times in this course already:
• As a way to implement break and continue
• As a way to make definitional translation more robust
• As an intermediate language in interpreters

Now, we’ll use them to translate a functional language down to
an assembly-like language.

The translation works as a recipe for compiling any of the
features we have discussed over the past few weeks all the way
down to hardware.

2

Roadmap

CS 4120 in one lecture!

3

Roadmap

CS 4120 in one lecture!

Source Language
λ-calculus with pairs and integers

3

Roadmap

CS 4120 in one lecture!

Source Language
λ-calculus with pairs and integers

Intermediate Language #1
λ-calculus in CPS

3

Roadmap

CS 4120 in one lecture!

Source Language
λ-calculus with pairs and integers

Intermediate Language #1
λ-calculus in CPS

Intermediate Language #2
λ-calculus in CPS + Closure Conversion

3

Roadmap

CS 4120 in one lecture!

Source Language
λ-calculus with pairs and integers

Intermediate Language #1
λ-calculus in CPS

Intermediate Language #2
λ-calculus in CPS + Closure Conversion

Machine Code
Simple RISC-like Assembly

3

Source Language

We’ll start from (untyped) λ-calculus with pairs and integers.

e ::= x
| λx. e
| e1 e2
| (e1, e2)
| #i e
| n
| e1 + e2

4

Target Language

p ::= bb1; bb2; . . . ; bbn

bb ::= lb : c1; c2; . . . ; cn; jump x
c ::= mov x1, x2

| mov x, n
| mov x, lb
| add x1, x2, x3
| load x1, x2[n]
| store x1, x2[n]
| malloc n

A program p consists of a series of basic blocks bb.

5

Target Language

p ::= bb1; bb2; . . . ; bbn

bb ::= lb : c1; c2; . . . ; cn; jump x

c ::= mov x1, x2
| mov x, n
| mov x, lb
| add x1, x2, x3
| load x1, x2[n]
| store x1, x2[n]
| malloc n

A basic block has a label lb and a sequence of commands c,
ending with “jump.”

5

Target Language

p ::= bb1; bb2; . . . ; bbn

bb ::= lb : c1; c2; . . . ; cn; jump x
c ::= mov x1, x2

| mov x, n
| mov x, lb
| add x1, x2, x3
| load x1, x2[n]
| store x1, x2[n]
| malloc n

Commands correspond to assembly language instructions and
are largely self-evident.

5

Target Language

p ::= bb1; bb2; . . . ; bbn

bb ::= lb : c1; c2; . . . ; cn; jump x
c ::= mov x1, x2

| mov x, n

| mov x, lb
| add x1, x2, x3
| load x1, x2[n]
| store x1, x2[n]
| malloc n

Commands correspond to assembly language instructions and
are largely self-evident.

5

Target Language

p ::= bb1; bb2; . . . ; bbn

bb ::= lb : c1; c2; . . . ; cn; jump x
c ::= mov x1, x2

| mov x, n
| mov x, lb

| add x1, x2, x3
| load x1, x2[n]
| store x1, x2[n]
| malloc n

Commands correspond to assembly language instructions and
are largely self-evident.

5

Target Language

p ::= bb1; bb2; . . . ; bbn

bb ::= lb : c1; c2; . . . ; cn; jump x
c ::= mov x1, x2

| mov x, n
| mov x, lb
| add x1, x2, x3

| load x1, x2[n]
| store x1, x2[n]
| malloc n

Commands correspond to assembly language instructions and
are largely self-evident.

5

Target Language

p ::= bb1; bb2; . . . ; bbn

bb ::= lb : c1; c2; . . . ; cn; jump x
c ::= mov x1, x2

| mov x, n
| mov x, lb
| add x1, x2, x3
| load x1, x2[n]

| store x1, x2[n]
| malloc n

Commands correspond to assembly language instructions and
are largely self-evident.

5

Target Language

p ::= bb1; bb2; . . . ; bbn

bb ::= lb : c1; c2; . . . ; cn; jump x
c ::= mov x1, x2

| mov x, n
| mov x, lb
| add x1, x2, x3
| load x1, x2[n]
| store x1, x2[n]

| malloc n

Commands correspond to assembly language instructions and
are largely self-evident.

5

Target Language

p ::= bb1; bb2; . . . ; bbn

bb ::= lb : c1; c2; . . . ; cn; jump x
c ::= mov x1, x2

| mov x, n
| mov x, lb
| add x1, x2, x3
| load x1, x2[n]
| store x1, x2[n]
| malloc n

The only un-RISC-y command is malloc. It allocates nwords of
space and places its address into a special register r0. Ignoring
garbage, it can be implemented as simply as “add r0, r0,−n.”

5

Intermediate Language

c ::= let x = e in c
| v1 v2 v3
| v1 v2

e ::= v | v1 + v2 | (v1, v2) | (#i v)
v ::= n | x | λx. λk. c | halt | λx.c

Commands c look like basic blocks.

6

Intermediate Language

c ::= let x = e in c
| v1 v2 v3
| v1 v2

e ::= v | v1 + v2 | (v1, v2) | (#i v)

v ::= n | x | λx. λk. c | halt | λx.c

There are no subexpressions in the language!

6

Intermediate Language

c ::= let x = e in c
| v1 v2 v3
| v1 v2

e ::= v | v1 + v2 | (v1, v2) | (#i v)
v ::= n | x | λx. λk. c | halt | λx.c

Abstractions encoding continuations are marked with an
underline. These are called administrative lambdas and can be
eliminated at compile time.

6

CPS Translation

The contract of the translation is that [[e]]kwill evaluate e and
pass its result to the continuation k.

To translate an entire program, we use k = halt, where halt is
the continuation to send the result of the entire program to.

7

CPS Translation

[[x]] k = k x

[[n]] k = k n
[[(e1 + e2)]] k = [[e1]]

(
λx1.[[e2]](λx2. let z = x1 + x2 in k z)

)
[[(e1, e2)]] k = [[e1]]

(
λx1.[[e2]]

(
λx2. let t = (x1, x2) in k t

))
[[#i e]] k = [[e]](λt. let y = #i t in k y)
[[λx. e]] k = k (λx. λk′. [[e]] k′)

[[e1 e2]] k = [[e1]]
(
λf.[[e2]]

(
λv.f v k

))

8

CPS Translation

[[x]] k = k x
[[n]] k = k n

[[(e1 + e2)]] k = [[e1]]
(
λx1.[[e2]](λx2. let z = x1 + x2 in k z)

)
[[(e1, e2)]] k = [[e1]]

(
λx1.[[e2]]

(
λx2. let t = (x1, x2) in k t

))
[[#i e]] k = [[e]](λt. let y = #i t in k y)
[[λx. e]] k = k (λx. λk′. [[e]] k′)

[[e1 e2]] k = [[e1]]
(
λf.[[e2]]

(
λv.f v k

))

8

CPS Translation

[[x]] k = k x
[[n]] k = k n

[[(e1 + e2)]] k = [[e1]]
(
λx1.[[e2]](λx2. let z = x1 + x2 in k z)

)

[[(e1, e2)]] k = [[e1]]
(
λx1.[[e2]]

(
λx2. let t = (x1, x2) in k t

))
[[#i e]] k = [[e]](λt. let y = #i t in k y)
[[λx. e]] k = k (λx. λk′. [[e]] k′)

[[e1 e2]] k = [[e1]]
(
λf.[[e2]]

(
λv.f v k

))

8

CPS Translation

[[x]] k = k x
[[n]] k = k n

[[(e1 + e2)]] k = [[e1]]
(
λx1.[[e2]](λx2. let z = x1 + x2 in k z)

)
[[(e1, e2)]] k = [[e1]]

(
λx1.[[e2]]

(
λx2. let t = (x1, x2) in k t

))

[[#i e]] k = [[e]](λt. let y = #i t in k y)
[[λx. e]] k = k (λx. λk′. [[e]] k′)

[[e1 e2]] k = [[e1]]
(
λf.[[e2]]

(
λv.f v k

))

8

CPS Translation

[[x]] k = k x
[[n]] k = k n

[[(e1 + e2)]] k = [[e1]]
(
λx1.[[e2]](λx2. let z = x1 + x2 in k z)

)
[[(e1, e2)]] k = [[e1]]

(
λx1.[[e2]]

(
λx2. let t = (x1, x2) in k t

))
[[#i e]] k = [[e]](λt. let y = #i t in k y)

[[λx. e]] k = k (λx. λk′. [[e]] k′)

[[e1 e2]] k = [[e1]]
(
λf.[[e2]]

(
λv.f v k

))

8

CPS Translation

[[x]] k = k x
[[n]] k = k n

[[(e1 + e2)]] k = [[e1]]
(
λx1.[[e2]](λx2. let z = x1 + x2 in k z)

)
[[(e1, e2)]] k = [[e1]]

(
λx1.[[e2]]

(
λx2. let t = (x1, x2) in k t

))
[[#i e]] k = [[e]](λt. let y = #i t in k y)
[[λx. e]] k = k (λx. λk′. [[e]] k′)

[[e1 e2]] k = [[e1]]
(
λf.[[e2]]

(
λv.f v k

))

8

CPS Translation

[[x]] k = k x
[[n]] k = k n

[[(e1 + e2)]] k = [[e1]]
(
λx1.[[e2]](λx2. let z = x1 + x2 in k z)

)
[[(e1, e2)]] k = [[e1]]

(
λx1.[[e2]]

(
λx2. let t = (x1, x2) in k t

))
[[#i e]] k = [[e]](λt. let y = #i t in k y)
[[λx. e]] k = k (λx. λk′. [[e]] k′)

[[e1 e2]] k = [[e1]]
(
λf.[[e2]]

(
λv.f v k

))

8

Example

Let’s translate the expression [[(λa.#1 a) (3, 4)]] k, using
k = halt.

[[(λa.#1 a) (3, 4)]] k
= [[λa.#1 a]] (λf. [[(3, 4)]](λv. f v k))
= (λf. [[(3, 4)]](λv. f v k)) (λa. λk′. [[#1 a]] k′)

= (λf. [[3]]
(
λx1.[[4]](λx2. let b = (x1, x2) in (λv. f v k) b)

)
(λa. λk′. [[#1 a]] k′)

= (λf.
(
λx1. (λx2. let b = (x1, x2) in (λv. f v k) b) 4

)
3)

(λa. λk′. [[#1 a]] k′)

= (λf.
(
λx1. (λx2. let b = (x1, x2) in (λv. f v k) b) 4

)
3)

(λa. λk′. [[a]](λt. let y = #1 t in k′ y))

9

Example

Let’s translate the expression [[(λa.#1 a) (3, 4)]] k, using
k = halt.

[[(λa.#1 a) (3, 4)]] k

= [[λa.#1 a]] (λf. [[(3, 4)]](λv. f v k))
= (λf. [[(3, 4)]](λv. f v k)) (λa. λk′. [[#1 a]] k′)

= (λf. [[3]]
(
λx1.[[4]](λx2. let b = (x1, x2) in (λv. f v k) b)

)
(λa. λk′. [[#1 a]] k′)

= (λf.
(
λx1. (λx2. let b = (x1, x2) in (λv. f v k) b) 4

)
3)

(λa. λk′. [[#1 a]] k′)

= (λf.
(
λx1. (λx2. let b = (x1, x2) in (λv. f v k) b) 4

)
3)

(λa. λk′. [[a]](λt. let y = #1 t in k′ y))

9

Example

Let’s translate the expression [[(λa.#1 a) (3, 4)]] k, using
k = halt.

[[(λa.#1 a) (3, 4)]] k
= [[λa.#1 a]] (λf. [[(3, 4)]](λv. f v k))

= (λf. [[(3, 4)]](λv. f v k)) (λa. λk′. [[#1 a]] k′)

= (λf. [[3]]
(
λx1.[[4]](λx2. let b = (x1, x2) in (λv. f v k) b)

)
(λa. λk′. [[#1 a]] k′)

= (λf.
(
λx1. (λx2. let b = (x1, x2) in (λv. f v k) b) 4

)
3)

(λa. λk′. [[#1 a]] k′)

= (λf.
(
λx1. (λx2. let b = (x1, x2) in (λv. f v k) b) 4

)
3)

(λa. λk′. [[a]](λt. let y = #1 t in k′ y))

9

Example

Let’s translate the expression [[(λa.#1 a) (3, 4)]] k, using
k = halt.

[[(λa.#1 a) (3, 4)]] k
= [[λa.#1 a]] (λf. [[(3, 4)]](λv. f v k))
= (λf. [[(3, 4)]](λv. f v k)) (λa. λk′. [[#1 a]] k′)

= (λf. [[3]]
(
λx1.[[4]](λx2. let b = (x1, x2) in (λv. f v k) b)

)
(λa. λk′. [[#1 a]] k′)

= (λf.
(
λx1. (λx2. let b = (x1, x2) in (λv. f v k) b) 4

)
3)

(λa. λk′. [[#1 a]] k′)

= (λf.
(
λx1. (λx2. let b = (x1, x2) in (λv. f v k) b) 4

)
3)

(λa. λk′. [[a]](λt. let y = #1 t in k′ y))

9

Example

Let’s translate the expression [[(λa.#1 a) (3, 4)]] k, using
k = halt.

[[(λa.#1 a) (3, 4)]] k
= [[λa.#1 a]] (λf. [[(3, 4)]](λv. f v k))
= (λf. [[(3, 4)]](λv. f v k)) (λa. λk′. [[#1 a]] k′)

= (λf. [[3]]
(
λx1.[[4]](λx2. let b = (x1, x2) in (λv. f v k) b)

)
(λa. λk′. [[#1 a]] k′)

= (λf.
(
λx1. (λx2. let b = (x1, x2) in (λv. f v k) b) 4

)
3)

(λa. λk′. [[#1 a]] k′)

= (λf.
(
λx1. (λx2. let b = (x1, x2) in (λv. f v k) b) 4

)
3)

(λa. λk′. [[a]](λt. let y = #1 t in k′ y))

9

Example

Let’s translate the expression [[(λa.#1 a) (3, 4)]] k, using
k = halt.

[[(λa.#1 a) (3, 4)]] k
= [[λa.#1 a]] (λf. [[(3, 4)]](λv. f v k))
= (λf. [[(3, 4)]](λv. f v k)) (λa. λk′. [[#1 a]] k′)

= (λf. [[3]]
(
λx1.[[4]](λx2. let b = (x1, x2) in (λv. f v k) b)

)
(λa. λk′. [[#1 a]] k′)

= (λf.
(
λx1. (λx2. let b = (x1, x2) in (λv. f v k) b) 4

)
3)

(λa. λk′. [[#1 a]] k′)

= (λf.
(
λx1. (λx2. let b = (x1, x2) in (λv. f v k) b) 4

)
3)

(λa. λk′. [[a]](λt. let y = #1 t in k′ y))

9

Example

Let’s translate the expression [[(λa.#1 a) (3, 4)]] k, using
k = halt.

[[(λa.#1 a) (3, 4)]] k
= [[λa.#1 a]] (λf. [[(3, 4)]](λv. f v k))
= (λf. [[(3, 4)]](λv. f v k)) (λa. λk′. [[#1 a]] k′)

= (λf. [[3]]
(
λx1.[[4]](λx2. let b = (x1, x2) in (λv. f v k) b)

)
(λa. λk′. [[#1 a]] k′)

= (λf.
(
λx1. (λx2. let b = (x1, x2) in (λv. f v k) b) 4

)
3)

(λa. λk′. [[#1 a]] k′)

= (λf.
(
λx1. (λx2. let b = (x1, x2) in (λv. f v k) b) 4

)
3)

(λa. λk′. [[a]](λt. let y = #1 t in k′ y))
9

Optimization

Clearly, the translation generates a lot of administrative λs!

To make the codemore efficient and compact, we will optimize
using some simple rewriting rules to eliminate administrative λs

We can eliminate applications to variables by copy propagation:

(λx.e) y → e{y/x}

Other lambdas can be converted into lets:

(λx.c)v → let x = v in c

We can also perform administrative η-reductions:

λx.k x → k

10

Optimization

Clearly, the translation generates a lot of administrative λs!

To make the codemore efficient and compact, we will optimize
using some simple rewriting rules to eliminate administrative λs

We can eliminate applications to variables by copy propagation:

(λx.e) y → e{y/x}

Other lambdas can be converted into lets:

(λx.c)v → let x = v in c

We can also perform administrative η-reductions:

λx.k x → k

10

Optimization

Clearly, the translation generates a lot of administrative λs!

To make the codemore efficient and compact, we will optimize
using some simple rewriting rules to eliminate administrative λs

We can eliminate applications to variables by copy propagation:

(λx.e) y → e{y/x}

Other lambdas can be converted into lets:

(λx.c)v → let x = v in c

We can also perform administrative η-reductions:

λx.k x → k

10

Optimization

Clearly, the translation generates a lot of administrative λs!

To make the codemore efficient and compact, we will optimize
using some simple rewriting rules to eliminate administrative λs

We can eliminate applications to variables by copy propagation:

(λx.e) y → e{y/x}

Other lambdas can be converted into lets:

(λx.c)v → let x = v in c

We can also perform administrative η-reductions:

λx.k x → k

10

Optimization

Clearly, the translation generates a lot of administrative λs!

To make the codemore efficient and compact, we will optimize
using some simple rewriting rules to eliminate administrative λs

We can eliminate applications to variables by copy propagation:

(λx.e) y → e{y/x}

Other lambdas can be converted into lets:

(λx.c)v → let x = v in c

We can also perform administrative η-reductions:

λx.k x → k

10

Example, Redux

After applying these rewrite rules to the expression we had
previously, we obtain:

let f = λ a. λ k′. let y = #1 a in k′ y in
let x1 = 3 in
let x2 = 4 in
let b = (x1, x2) in
f b k

This is starting to look a lot more like our target language!

11

Optimization

Writing these optimizations separately makes it easier to define
the CPS conversion uniformly, without worrying about
efficiency.

Wemay not be able to remove all administrative lambdas. Any
that cannot be eliminated using the rules above are converted
into “real” lambdas.

12

Optimization

Writing these optimizations separately makes it easier to define
the CPS conversion uniformly, without worrying about
efficiency.

Wemay not be able to remove all administrative lambdas. Any
that cannot be eliminated using the rules above are converted
into “real” lambdas.

12

Roadmap

Source Language
λ-calculus with pairs and integers

Intermediate Language #1
λ-calculus in CPS

Intermediate Language #2
λ-calculus in CPS + Closure Conversion

13

Closure Conversion

The next step is to bring all λs to the top level, with no nesting.

P ::= let xf = λx1. . . . λxn. λk. c in P
| let xc = λx1. . . . λxn. c in P
| c

c ::= let x = e in c | x1 x2 . . . xn
e ::= n | x | halt | x1 + x2 | (x1, x2) | #i x

This translation requires the construction of closures that
capture the free variables of the lambda abstractions and is
known as closure conversion.

14

Closure Conversion

Themain part of the translation is:

[[λx. λk. c]] σ =
let (c′, σ′) = [[c]] σ in
let y1, . . . , yn = fvs(λx. λk. c′) in
(f y1 . . . yn, σ′[f 7→ λy1. . . . λyn. λx. λk. c′])where f fresh

The translation of λx. λk. c above first translates the body c, then
creates a new function f parameterized on x as well as the free
variables y1 to yn of the translated body.

It then adds f to the environment σ replaces the entire lambda
with (f yn . . . yn).

When applied to an entire program, this has the effect of
eliminating all nested λs.

15

Closure Conversion

Themain part of the translation is:

[[λx. λk. c]] σ =
let (c′, σ′) = [[c]] σ in
let y1, . . . , yn = fvs(λx. λk. c′) in
(f y1 . . . yn, σ′[f 7→ λy1. . . . λyn. λx. λk. c′])where f fresh

The translation of λx. λk. c above first translates the body c, then
creates a new function f parameterized on x as well as the free
variables y1 to yn of the translated body.

It then adds f to the environment σ replaces the entire lambda
with (f yn . . . yn).

When applied to an entire program, this has the effect of
eliminating all nested λs.

15

Closure Conversion

Themain part of the translation is:

[[λx. λk. c]] σ =
let (c′, σ′) = [[c]] σ in
let y1, . . . , yn = fvs(λx. λk. c′) in
(f y1 . . . yn, σ′[f 7→ λy1. . . . λyn. λx. λk. c′])where f fresh

The translation of λx. λk. c above first translates the body c, then
creates a new function f parameterized on x as well as the free
variables y1 to yn of the translated body.

It then adds f to the environment σ replaces the entire lambda
with (f yn . . . yn).

When applied to an entire program, this has the effect of
eliminating all nested λs.

15

Closure Conversion

Themain part of the translation is:

[[λx. λk. c]] σ =
let (c′, σ′) = [[c]] σ in
let y1, . . . , yn = fvs(λx. λk. c′) in
(f y1 . . . yn, σ′[f 7→ λy1. . . . λyn. λx. λk. c′])where f fresh

The translation of λx. λk. c above first translates the body c, then
creates a new function f parameterized on x as well as the free
variables y1 to yn of the translated body.

It then adds f to the environment σ replaces the entire lambda
with (f yn . . . yn).

When applied to an entire program, this has the effect of
eliminating all nested λs.

15

Roadmap

Source Language
λ-calculus with pairs and integers

Intermediate Language #1
λ-calculus in CPS

Intermediate Language #2
λ-calculus in CPS + Closure Conversion

Machine Code
Simple RISC-like Assembly

16

Code Generation

P[[c]] = main : C[[c]];
halt :

17

Code Generation

P[[let xf = λx1. . . . λxn. λk. c in p]] = xf : mov x1, a1;

...
mov xn, an;

mov k, ra;
C[[c]];
P[[p]]

17

Code Generation

P[[let xc = λx1. . . . λxn. c in p]] = xc : mov x1, a1;

...
mov xn, an;

C[[c]];
P[[p]]

17

Code Generation

C[[let x = n in c]] = mov x, n;
C[[c]]

17

Code Generation

C[[let x1 = x2 in c]] = mov x1, x2;
C[[c]]

17

Code Generation

C[[let x = x1 + x2 in c]] = add x1, x2, x;
C[[c]]

17

Code Generation

C[[let x = (x1, x2) in c]] = malloc 2;
mov x, r0;
store x1, x[0];
store x2, x[1];
C[[c]]

17

Code Generation

C[[let x = #i x1 in c]] = load x, x1[i− 1];
C[[c]]

17

Code Generation

C[[x k x1 . . . xn]] = mov a1, x1;
...

mov an, xn;
mov ra, k;
jump x

17

Final Thoughts

Note that we assume an infinite supply of registers. We would
need to do register allocation and spill registers to a stack.

Also, while this translation is very simple, it is not particularly
efficient. For example, we are doing a lot of register moves when
calling functions and when starting the function body, which
could be optimized.

18

