CS 4110

Programming Languages \& Logics

Lecture 23
 Type Inference

26 October 2016

Announcements

- HW \#6 due tonight at 11:59pm We made one problem easier! Please see Piazza.
- HW \#7 out now
- My office hours: Thursday instead of Friday (2-3pm)

Review: Polymorphic λ-Calculus

Syntax

$$
\begin{aligned}
& e::=n|x| \lambda x: \tau . e\left|e_{1} e_{2}\right| \Lambda X . e \mid e[\tau] \\
& v::=n|\lambda x: \tau . e| \Lambda X . e
\end{aligned}
$$

Dynamic Semantics

$$
E::=[\cdot]|E e| v E \mid E[\tau]
$$

$\overline{(\lambda x: \tau . e) v \rightarrow e\{v / x\}}$
$\overline{(\Lambda X . e)[\tau] \rightarrow e\{\tau / X\}}$

Review: Polymorphic λ-Calculus

$$
\begin{array}{rc}
\frac{\Gamma(x)=\tau}{\Delta, \Gamma \vdash n: \text { int }} & \frac{\Gamma, \Gamma \vdash x: \tau}{} \\
\frac{\Delta, \Gamma, x: \tau \vdash e: \tau^{\prime} \quad \Delta \vdash \tau \text { ok }}{\Delta, \Gamma \vdash \lambda x: \tau . e: \tau \rightarrow \tau^{\prime}} & \frac{\Delta, \Gamma \vdash e_{1}: \tau \rightarrow \tau^{\prime} \quad \Delta, \Gamma \vdash e_{2}: \tau}{\Delta, \Gamma \vdash e_{1} e_{2}: \tau^{\prime}} \\
\frac{\Delta \cup\{X\}, \Gamma \vdash e: \tau}{\Delta, \Gamma \vdash \Lambda X . e: \forall X . \tau} & \frac{\Delta, \Gamma \vdash e: \forall X \cdot \tau^{\prime} \quad \Delta \vdash \tau \text { ok }}{\Delta, \Gamma \vdash e[\tau]: \tau^{\prime}\{\tau / X\}}
\end{array}
$$

Review: Polymorphic λ-Calculus

Polymorphism let us write a doubling function that works for any type of function:

$$
\text { double } \triangleq \Lambda X . \lambda f: X \rightarrow X . \lambda x: X . f(f x) .
$$

The type of this expression is:

$$
\forall X .(X \rightarrow X) \rightarrow X \rightarrow X
$$

You can use the polymorphic function by providing a type: double [int] $(\lambda n: \mathbf{i n t} . n+1) 7$

Type Inference

In languages like OCaml, programmers don't have to annotate their programs with $\forall X$. τ or e $[\tau]$.

Type Inference

In languages like OCaml, programmers don't have to annotate their programs with $\forall X$. τ or $e[\tau]$.

For example, we can write:
let double $\mathrm{f} x=\mathrm{f}$ (f x)
and OCaml will figure out that the type is:
$(' a \rightarrow$ 'a) \rightarrow 'a \rightarrow 'a
which is equivalent to the same System F type:

$$
\forall A .(A \rightarrow A) \rightarrow A \rightarrow A
$$

Type Inference

In languages like OCaml, programmers don't have to annotate their programs with $\forall X$. τ or $e[\tau]$.

We can also write
double (fun $\mathrm{x} \rightarrow \mathrm{x}+1$) 7
and OCaml will infer that the polymorphic function double is instantiated at the type int.

ML Polymorphism

However, polymorphism in OCaml and other MLs, has some restrictions to ensure that type inference remains decidable.

ML Polymorphism

However, polymorphism in OCaml and other MLs, has some restrictions to ensure that type inference remains decidable.

These restrictions, called prenex polymorphism, stipulate that $\forall \mathrm{s}$ may only appear in the "outermost" position.

ML Polymorphism

However, polymorphism in OCaml and other MLs, has some restrictions to ensure that type inference remains decidable.

These restrictions, called prenex polymorphism, stipulate that $\forall \mathrm{s}$ may only appear in the "outermost" position.

Examples

- Prenex: $\forall \alpha . \alpha \rightarrow \alpha$

ML Polymorphism

However, polymorphism in OCaml and other MLs, has some restrictions to ensure that type inference remains decidable.

These restrictions, called prenex polymorphism, stipulate that $\forall s$ may only appear in the "outermost" position.

Examples

- Prenex: $\forall \alpha . \alpha \rightarrow \alpha$
- Not prenex: $(\forall \alpha . \alpha \rightarrow \alpha) \rightarrow$ int
- Not prenex: $(\forall \alpha . \alpha \rightarrow \alpha) \rightarrow$ int

ML Polymorphism

However, polymorphism in OCaml and other MLs, has some restrictions to ensure that type inference remains decidable.

These restrictions, called prenex polymorphism, stipulate that $\forall s$ may only appear in the "outermost" position.

Examples

- Prenex: $\forall \alpha . \alpha \rightarrow \alpha$
- Not prenex: $(\forall \alpha . \alpha \rightarrow \alpha) \rightarrow$ int
- Not prenex: $(\forall \alpha . \alpha \rightarrow \alpha) \rightarrow$ int

These restrictions have the following practical ramifications:

- Can't instantiate type variables with polymorphic types
- Can't put a polymorphic type on the left of an arrow

Example

These restrictions mean that certain terms that are typeable in System F are not typeable in ML!

Example

These restrictions mean that certain terms that are typeable in System F are not typeable in ML!

OCaml version 4.01.0
\# fun x-> x x;
Error: This expression has type 'a -> 'b but an expression was expected of type 'a The type variable 'a occurs inside 'a -> 'b

Type Inference

Type inference may be undecidable for the polymorphic λ-calculus and OCaml, but it is possible for the simply-tpyed λ-calculus!

Type Inference

Type inference may be undecidable for the polymorphic λ-calculus and OCaml, but it is possible for the simply-tpyed λ-calculus!

Type inference for the STLC means guessing a τ in every abstraction in an untyped version:

$$
\lambda x . e
$$

to produce a typed program:

$$
\lambda x: \tau . e
$$

that we can use in the typing rule for functions.

Example

Here's an untyped program:
λa. λb. λc. if $a(b+1)$ then b else c

Example

Here's an untyped program:
λa. λb. λc. if $a(b+1)$ then b else c

Informal inference:

Example

Here's an untyped program:
λa. λb. λc. if $a(b+1)$ then b else c

Informal inference:

- b must be int

Example

Here's an untyped program:
λa. λb. λc. if $a(b+1)$ then b else c
Informal inference:

- b must be int
- a must be some kind of function

Example

Here's an untyped program:
λa. λb. λc. if $a(b+1)$ then b else c
Informal inference:

- b must be int
- a must be some kind of function
- the argument type of a must be the same as $b+1$

Example

Here's an untyped program:
$\lambda a . \lambda b$. λc. if $a(b+1)$ then b else c

Informal inference:

- b must be int
- a must be some kind of function
- the argument type of a must be the same as $b+1$
- the result type of a must be bool

Example

Here's an untyped program:
$\lambda a . \lambda b$. λc. if $a(b+1)$ then b else c

Informal inference:

- b must be int
- a must be some kind of function
- the argument type of a must be the same as $b+1$
- the result type of a must be bool
- the type of c must be the same as b

Example

Here's an untyped program:
$\lambda a . \lambda b$. λc. if $a(b+1)$ then b else c

Informal inference:

- b must be int
- a must be some kind of function
- the argument type of a must be the same as $b+1$
- the result type of a must be bool
- the type of c must be the same as b

Putting all these pieces together:
$\lambda a:$ int \rightarrow bool. λb :int. $\lambda c:$ int. if $a(b+1)$ then b else c

Constriant-Based Inference

Let's automate type inference!

Constriant-Based Inference

Let's automate type inference!
We introduce a new judgment:

$$
\Gamma \vdash e: \tau \mid C
$$

Given a typing context Γ and an expression e, it generates a set of constraints-equations between types.

Constriant-Based Inference

Let's automate type inference!
We introduce a new judgment:

$$
\Gamma \vdash e: \tau \mid C
$$

Given a typing context Γ and an expression e, it generates a set of constraints-equations between types.

If these constraints are solvable, then e can be well-typed in Γ.
A solution to a set of constraints is a type substitution σ that, for each equation, makes both sides syntactically equal.

STLC for Type Inference

Let's define the type inference judgment for this STLC language:

$$
\begin{aligned}
& e::=x|\lambda x: \tau . e| e_{1} e_{2}|n| e_{1}+e_{2} \\
& \tau::=\text { int }|x| \tau_{1} \rightarrow \tau_{2}
\end{aligned}
$$

You can use a type variable X wherever you want to have a type inferred.

Constraint-Based Typing Judgment

$$
\frac{x: \tau \in \Gamma}{\Gamma \vdash x: \tau \mid \emptyset} \text { CT-VAR }
$$

Constraint-Based Typing Judgment

$$
\frac{x: \tau \in \Gamma}{\Gamma \vdash x: \tau \mid \emptyset} \text { CT-VAR }
$$

$\overline{\Gamma \vdash n: \text { int } \mid \emptyset}$ CT-INT

Constraint-Based Typing Judgment

$$
\begin{gathered}
\frac{x: \tau \in \Gamma}{\Gamma \vdash x: \tau \mid \emptyset} \text { CT-VAR } \quad \overline{\Gamma \vdash n: \mathbf{i n t} \mid \emptyset} \text { CT-INT } \\
\frac{\Gamma \vdash e_{1}: \tau_{1}\left|C_{1} \quad \Gamma \vdash e_{2}: \tau_{2}\right| C_{2}}{\Gamma \vdash e_{1}+e_{2}: \mathbf{i n t} \mid C_{1} \cup C_{2} \cup\left\{\tau_{1}=\text { int }, \tau_{2}=\mathbf{i n t}\right\}} \text { CT-ADD }
\end{gathered}
$$

Constraint-Based Typing Judgment

$$
\begin{gathered}
\frac{x: \tau \in \Gamma}{\Gamma \vdash x: \tau \mid \emptyset} \text { CT-VAR } \quad \overline{\Gamma \vdash n: \mathbf{i n t} \mid \emptyset} \text { CT-INT } \\
\frac{\Gamma \vdash e_{1}: \tau_{1}\left|C_{1} \quad \Gamma \vdash e_{2}: \tau_{2}\right| C_{2}}{\Gamma \vdash e_{1}+e_{2}: \mathbf{i n t} \mid C_{1} \cup C_{2} \cup\left\{\tau_{1}=\mathbf{i n t}, \tau_{2}=\mathbf{i n t}\right\}} \text { CT-ADD } \\
\frac{\Gamma, x: \tau_{1} \vdash e: \tau_{2} \mid C}{\Gamma \vdash \lambda x: \tau_{1} . e: \tau_{1} \rightarrow \tau_{2} \mid C} \text { CT-ABS }
\end{gathered}
$$

Constraint-Based Typing Judgment

$$
\begin{gathered}
\frac{x: \tau \in \Gamma}{\Gamma \vdash x: \tau \mid \emptyset} \mathrm{CT}-\mathrm{VAR} \quad \overline{\Gamma \vdash n: \mathbf{i n t} \mid \emptyset} \mathrm{CT}-\mathrm{INT} \\
\frac{\Gamma \vdash e_{1}: \tau_{1}\left|C_{1} \quad \Gamma \vdash e_{2}: \tau_{2}\right| C_{2}}{\Gamma \vdash e_{1}+e_{2}: \mathbf{i n t} \mid C_{1} \cup C_{2} \cup\left\{\tau_{1}=\mathbf{i n t}, \tau_{2}=\mathbf{i n t}\right\}} \mathrm{CT}-\mathrm{AdD} \\
\frac{\Gamma, x: \tau_{1} \vdash e: \tau_{2} \mid C}{\Gamma \vdash \lambda x: \tau_{1} \cdot e: \tau_{1} \rightarrow \tau_{2} \mid C} \mathrm{CT}-\mathrm{ABS} \\
\frac{\Gamma \vdash e_{1}: \tau_{1}\left|C_{1} \quad \Gamma \vdash e_{2}: \tau_{2}\right| C_{2}}{\Gamma \text { fresh } C^{\prime}=C_{1} \cup C_{2} \cup\left\{\tau_{1}=\tau_{2} \rightarrow X\right\}} \\
\Gamma \vdash e_{1} e_{2}: X \mid C^{\prime} \\
\text { CT-APP }
\end{gathered}
$$

Solving Constraints

A type substitution is a finite map from type variables to types.
Example: The substitution
$[X \mapsto$ int,$Y \mapsto$ int \rightarrow int $]$ maps type variable X to int and Y to int \rightarrow int.

Type Substitution

We can define substitution of type variables formally:

Type Substitution

We can define substitution of type variables formally:

$$
\sigma(X)= \begin{cases}\tau & \text { if } X \mapsto \tau \in \sigma \\ X & \text { if } X \text { not in the domain of } \sigma\end{cases}
$$

Type Substitution

We can define substitution of type variables formally:

$$
\begin{aligned}
\sigma(X) & = \begin{cases}\tau & \text { if } X \mapsto \tau \in \sigma \\
X & \text { if } X \text { not in the domain of } \sigma\end{cases} \\
\sigma(\mathbf{i n t}) & =\mathbf{i n t}
\end{aligned}
$$

Type Substitution

We can define substitution of type variables formally:

$$
\begin{aligned}
\sigma(X) & = \begin{cases}\tau & \text { if } X \mapsto \tau \in \sigma \\
X & \text { if } X \text { not in the domain of } \sigma\end{cases} \\
\sigma(\mathbf{i n t}) & =\text { int } \\
\sigma\left(\tau \rightarrow \tau^{\prime}\right) & =\sigma(\tau) \rightarrow \sigma\left(\tau^{\prime}\right)
\end{aligned}
$$

Type Substitution

We can define substitution of type variables formally:

$$
\begin{aligned}
\sigma(X) & = \begin{cases}\tau & \text { if } X \mapsto \tau \in \sigma \\
X & \text { if } X \text { not in the domain of } \sigma\end{cases} \\
\sigma(\text { int }) & =\text { int } \\
\sigma\left(\tau \rightarrow \tau^{\prime}\right) & =\sigma(\tau) \rightarrow \sigma\left(\tau^{\prime}\right)
\end{aligned}
$$

We don't need to worry about avoiding variable capture: all type variables are "free."

Type Substitution

We can define substitution of type variables formally:

$$
\begin{aligned}
\sigma(X) & = \begin{cases}\tau & \text { if } X \mapsto \tau \in \sigma \\
X & \text { if } X \text { not in the domain of } \sigma\end{cases} \\
\sigma(\text { int }) & =\mathbf{i n t} \\
\sigma\left(\tau \rightarrow \tau^{\prime}\right) & =\sigma(\tau) \rightarrow \sigma\left(\tau^{\prime}\right)
\end{aligned}
$$

We don't need to worry about avoiding variable capture: all type variables are "free."

Given two substitutions σ_{1} and σ_{2}, we write $\sigma_{1} \circ \sigma_{2}$ for their composition: $\left(\sigma_{1} \circ \sigma_{2}\right)(\tau)=\sigma_{1}\left(\sigma_{2}(\tau)\right)$.

Unification

Our constraints are of the form $\tau=\tau^{\prime}$.

Unification

Our constraints are of the form $\tau=\tau^{\prime}$.
We say that a substitution σ unifies constraint $\tau=\tau^{\prime}$ if
$\sigma(\tau)=\sigma\left(\tau^{\prime}\right)$.
We say that substitution σ satisfies (or unifies) set of constraints C if σ unifies every constraint in C.

Unification

If:

- $\Gamma \vdash e: \tau \mid C$, and
- σ satisfies C, then e has type τ^{\prime} under Γ, where $\sigma(\tau)=\tau^{\prime}$.

If there are no substitutions that satisfy C, then e is not typeable.

Unification

If:

- $\Gamma \vdash e: \tau \mid C$, and
- σ satisfies C,
then e has type τ^{\prime} under Γ, where $\sigma(\tau)=\tau^{\prime}$.

If there are no substitutions that satisfy C, then e is not typeable.
So let's find a substitution σ that unifies a set of constraints C !

Unification Algorithm

Unification Algorithm

$\operatorname{unify}(\emptyset)=[] \quad$ (the empty substitution)

Unification Algorithm

unify $(\emptyset)=[] \quad$ (the empty substitution)
$\operatorname{unify}\left(\left\{\tau=\tau^{\prime}\right\} \cup C^{\prime}\right)=$
if $\tau=\tau^{\prime}$ then
unify $\left(C^{\prime}\right)$

Unification Algorithm

unify $(\emptyset)=[] \quad$ (the empty substitution)
$\operatorname{unify}\left(\left\{\tau=\tau^{\prime}\right\} \cup C^{\prime}\right)=$
if $\tau=\tau^{\prime}$ then
unify (C^{\prime})
else if $\tau=X$ and X not a free variable of τ^{\prime} then unify $\left(C^{\prime}\left\{\tau^{\prime} / X\right\}\right) \circ\left[X \mapsto \tau^{\prime}\right]$

Unification Algorithm

unify $(\emptyset)=[] \quad$ (the empty substitution)
$\operatorname{unify}\left(\left\{\tau=\tau^{\prime}\right\} \cup C^{\prime}\right)=$
if $\tau=\tau^{\prime}$ then
unify (C^{\prime})
else if $\tau=X$ and X not a free variable of τ^{\prime} then unify $\left(C^{\prime}\left\{\tau^{\prime} / X\right\}\right) \circ\left[X \mapsto \tau^{\prime}\right]$
else if $\tau^{\prime}=X$ and X not a free variable of τ then $\operatorname{unify}\left(C^{\prime}\{\tau / X\}\right) \circ[X \mapsto \tau]$

Unification Algorithm

$\operatorname{unify}(\emptyset)=[] \quad$ (the empty substitution)
$\operatorname{unify}\left(\left\{\tau=\tau^{\prime}\right\} \cup C^{\prime}\right)=$
if $\tau=\tau^{\prime}$ then
unify (C^{\prime})
else if $\tau=X$ and X not a free variable of τ^{\prime} then unify $\left(C^{\prime}\left\{\tau^{\prime} / X\right\}\right) \circ\left[X \mapsto \tau^{\prime}\right]$
else if $\tau^{\prime}=X$ and X not a free variable of τ then unify $\left(C^{\prime}\{\tau / X\}\right) \circ[X \mapsto \tau]$
else if $\tau=\tau_{o} \rightarrow \tau_{1}$ and $\tau^{\prime}=\tau_{o}^{\prime} \rightarrow \tau_{1}^{\prime}$ then $\operatorname{unify}\left(C^{\prime} \cup\left\{\tau_{0}=\tau_{0}^{\prime}, \tau_{1}=\tau_{1}^{\prime}\right\}\right)$

Unification Algorithm

unify $(\emptyset)=[] \quad$ (the empty substitution)
$\operatorname{unify}\left(\left\{\tau=\tau^{\prime}\right\} \cup C^{\prime}\right)=$
if $\tau=\tau^{\prime}$ then
unify (C^{\prime})
else if $\tau=X$ and X not a free variable of τ^{\prime} then unify $\left(C^{\prime}\left\{\tau^{\prime} / X\right\}\right) \circ\left[X \mapsto \tau^{\prime}\right]$
else if $\tau^{\prime}=X$ and X not a free variable of τ then unify $\left(C^{\prime}\{\tau / X\}\right) \circ[X \mapsto \tau]$
else if $\tau=\tau_{o} \rightarrow \tau_{1}$ and $\tau^{\prime}=\tau_{o}^{\prime} \rightarrow \tau_{1}^{\prime}$ then $\operatorname{unify}\left(C^{\prime} \cup\left\{\tau_{0}=\tau_{0}^{\prime}, \tau_{1}=\tau_{1}^{\prime}\right\}\right)$
else
fail

Unification Properties

The unification algorithm always terminates.

Unification Properties

The unification algorithm always terminates.
The solution, if it exists, is the most general solution: if $\sigma=$ unify (C) and σ^{\prime} is a solution to C, then there is some $\sigma^{\prime \prime}$ such that $\sigma^{\prime}=\left(\sigma^{\prime \prime} \circ \sigma\right)$.

