CS 4110

Programming Languages \& Logics

Lecture 22 Polymorphism

21 October 2016

Announcements

- Adrian will be back Monday, with guest lecturer Yaron Minsky

Roadmap

Over the last few lectures, we've developed a simple type system for λ-calculus, extensions for handling a number of language features, and we proved normalization.

Today we'll develop a substantial extension of the simply-typed λ-calculus by making the type system polymorphic.

Polymorphism

Polymorphism generally falls into one of three broad varieties.

Polymorphism

Polymorphism generally falls into one of three broad varieties.

- Subtype polymorphism allows values of type τ to masquerade as values of type τ^{\prime}, provided that τ is a subtype of τ^{\prime}.

Polymorphism

Polymorphism generally falls into one of three broad varieties.

- Subtype polymorphism allows values of type τ to masquerade as values of type τ^{\prime}, provided that τ is a subtype of τ^{\prime}.
- Ad-hoc polymorphism, also called overloading, allows the same function name to be used with functions that take different types of parameters.

Polymorphism

Polymorphism generally falls into one of three broad varieties.

- Subtype polymorphism allows values of type τ to masquerade as values of type τ^{\prime}, provided that τ is a subtype of τ^{\prime}.
- Ad-hoc polymorphism, also called overloading, allows the same function name to be used with functions that take different types of parameters.
- Parametric polymorphism refers to code that is written without knowledge of the actual type of the arguments; the code is parametric in the type of the parameters.

Example

Consider a "doubling" function that takes a function f, and an integer x, applies f to x, and then applies f to the result:

Example

Consider a "doubling" function that takes a function f, and an integer x, applies f to x, and then applies f to the result:
doublelnt $\triangleq \lambda f:$ int \rightarrow int. $\lambda x:$ int. $f(f x)$

Example

Consider a "doubling" function that takes a function f, and an integer x, applies f to x, and then applies f to the result:

$$
\text { doublelnt } \triangleq \lambda f: \text { int } \rightarrow \text { int. } \lambda x: \text { int. } f(f x)
$$

Now suppose we want the same function for booleans, or functions...
doubleBool $\triangleq \lambda f:$ bool \rightarrow bool. λx : bool. $f(f x)$

$$
\text { doubleFn } \triangleq \lambda f:(\text { int } \rightarrow \text { int }) \rightarrow \text { (int } \rightarrow \text { int }) . \lambda x: \text { int } \rightarrow \text { int. } f(f x)
$$

Abstraction

These examples on the preceding slides violate a fundamental principle of software engineering:

Abstraction

These examples on the preceding slides violate a fundamental principle of software engineering:

Definition (Abstraction Principle)

Every major piece of functionality in a program should be implemented in just one place in the code. When similar functionality is provided by distinct pieces of code, the two should be combined into one by abstracting out the varying parts.

Abstraction

These examples on the preceding slides violate a fundamental principle of software engineering:

Definition (Abstraction Principle)

Every major piece of functionality in a program should be implemented in just one place in the code. When similar functionality is provided by distinct pieces of code, the two should be combined into one by abstracting out the varying parts.

In the doubling functions, the varying parts are the types.

Abstraction

These examples on the preceding slides violate a fundamental principle of software engineering:

Definition (Abstraction Principle)

Every major piece of functionality in a program should be implemented in just one place in the code. When similar functionality is provided by distinct pieces of code, the two should be combined into one by abstracting out the varying parts.

In the doubling functions, the varying parts are the types.
We need a way to abstract out the type of the doubling operation, and later instantiate it with different concrete types.

Polymorphic λ-Calculus

Invented indepedently in 1972-1974 by a computer scientist John Reynolds and a logician Jean-Yves Girard (who called it System F).

Commonly used as a basis for studying type system extensions
Key feature: function abstraction and application at the type level!

Notation:

- $\Lambda X . e$: type abstraction
- e[τ]: type application

Example:
$\lambda X . \lambda x: X . x$

Polymorphic λ-Calculus

Syntax

$$
\begin{aligned}
& e::=n|x| \lambda x: \tau . e\left|e_{1} e_{2}\right| \text { MX.e } \mid e[\tau] \\
& v::=n|\lambda x: \tau . e| \Lambda X . e
\end{aligned}
$$

Polymorphic λ-Calculus

Syntax

$$
\begin{aligned}
& e::=n|x| \lambda x: \tau . e\left|e_{1} e_{2}\right| \text { NX.e } \mid e[\tau] \\
& v::=n|\lambda x: \tau . e| \text { NX.e }
\end{aligned}
$$

Dynamic Semantics

$$
E::=[\cdot]|E e| v E \mid E[\tau]
$$

Polymorphic λ-Calculus

Syntax

$$
\begin{aligned}
& e::=n|x| \lambda x: \tau . e\left|e_{1} e_{2}\right| \text { NX.e } \mid e[\tau] \\
& v::=n|\lambda x: \tau . e| \text { NX.e }
\end{aligned}
$$

Dynamic Semantics

$$
E::=[\cdot]|E e| v E \mid E[\tau]
$$

$$
\frac{e \rightarrow e^{\prime}}{E[e] \rightarrow E\left[e^{\prime}\right]} \quad \overline{(\lambda x: \tau . e) v \rightarrow e\{v / x\}}
$$

Polymorphic λ-Calculus

Syntax

$$
\begin{aligned}
& e::=n|x| \lambda x: \tau . e\left|e_{1} e_{2}\right| \text { NX.e } \mid e[\tau] \\
& v::=n|\lambda x: \tau . e| \text { NX.e }
\end{aligned}
$$

Dynamic Semantics

$$
E::=[\cdot]|E e| v E \mid E[\tau]
$$

$$
\frac{e \rightarrow e^{\prime}}{E[e] \rightarrow E\left[e^{\prime}\right]}
$$

$$
\overline{(\lambda x: \tau . e) v \rightarrow e\{v / x\}}
$$

$$
\overline{(\Lambda X . e)[\tau] \rightarrow e\{\tau / X\}}
$$

Typing Judgment

Type Syntax

$$
\tau::=\text { int }\left|\tau_{1} \rightarrow \tau_{2}\right| X \mid \forall X . \tau
$$

Typing Judgment

Type Syntax

$$
\tau::=\text { int }\left|\tau_{1} \rightarrow \tau_{2}\right| X \mid \forall X . \tau
$$

Typing Judgment: $\Delta, \Gamma \vdash e: \tau$

- 「 a mapping from variables to types
- Δ a set of types in scope
- e an expression
- τ a type

Typing Judgment

Type Syntax

$$
\tau::=\text { int }\left|\tau_{1} \rightarrow \tau_{2}\right| X \mid \forall X . \tau
$$

Typing Judgment: $\Delta, \Gamma \vdash e: \tau$

- 「 a mapping from variables to types
- Δ a set of types in scope
- e an expression
- τ a type

Type Well-Formedness: $\Delta \vdash \tau$ ok

- Δ a set of types in scope
- τ a type

Typing Rules
$\overline{\Delta, \Gamma \vdash n: \text { int }}$

Typing Rules

Typing Rules

$$
\frac{\Delta, \Gamma, x: \tau \vdash e: \tau^{\prime} \quad \Delta \vdash \tau \text { ok }}{\Delta, \Gamma \vdash \lambda x: \tau . e: \tau \rightarrow \tau^{\prime}}
$$

Typing Rules

$\frac{\Delta, \Gamma, x: \tau \vdash e: \tau^{\prime} \quad \Delta \vdash \tau \text { ok }}{\Delta, \Gamma \vdash \lambda x: \tau . e: \tau \rightarrow \tau^{\prime}} \quad \frac{\Delta, \Gamma \vdash e_{1}: \tau \rightarrow \tau^{\prime} \quad \Delta, \Gamma \vdash e_{2}: \tau}{\Delta, \Gamma \vdash e_{1} e_{2}: \tau^{\prime}}$

Typing Rules

$$
\begin{gathered}
\frac{\Delta, \Gamma, x: \tau \vdash e: \tau^{\prime} \quad \Delta \vdash \tau \text { ok }}{\Delta, \Gamma \vdash \lambda x: \tau . e: \tau \rightarrow \tau^{\prime}} \quad \frac{\Delta, \Gamma \vdash e_{1}: \tau \rightarrow \tau^{\prime} \quad \Delta, \Gamma \vdash e_{2}: \tau}{\Delta, \Gamma \vdash e_{1} e_{2}: \tau^{\prime}} \\
\frac{\Delta \cup\{X\}, \Gamma \vdash e: \tau}{\Delta, \Gamma \vdash \Lambda X . e: \forall X . \tau}
\end{gathered}
$$

Typing Rules

$$
\begin{array}{ll}
\\
\Delta, \Gamma \vdash n: \mathbf{i n t} & \frac{\Gamma(x)=\tau}{\Delta, \Gamma \vdash x: \tau}
\end{array}
$$

$$
\begin{array}{cl}
\frac{\Delta, \Gamma, x: \tau \vdash e: \tau^{\prime} \quad \Delta \vdash \tau \text { ok }}{\Delta, \Gamma \vdash \lambda x: \tau . e: \tau \rightarrow \tau^{\prime}} & \\
\frac{\Delta, \Gamma \vdash e_{1}: \tau \rightarrow \tau^{\prime} \quad \Delta, \Gamma \vdash e_{2}: \tau}{\Delta, \Gamma \vdash e_{1} e_{2}: \tau^{\prime}} \\
\frac{\Delta \cup\{X\}, \Gamma \vdash e: \tau}{\Delta, \Gamma \vdash \Lambda X \cdot e: \forall X \cdot \tau} & \frac{\Delta, \Gamma \vdash e: \forall X \cdot \tau^{\prime} \quad \Delta \vdash \tau \text { ok }}{\Delta, \Gamma \vdash e[\tau]: \tau^{\prime}\{\tau / X\}}
\end{array}
$$

Type Well-Formedness

$$
\frac{X \in \Delta}{\Delta \vdash X \mathrm{ok}}
$$

Type Well-Formedness

$$
\frac{X \in \Delta}{\Delta \vdash X \mathrm{ok}}
$$

$\overline{\Delta \vdash \text { int } \mathrm{ok}}$

Type Well-Formedness

$$
\frac{X \in \Delta}{\Delta \vdash X \mathrm{ok}}
$$

$\Delta \vdash$ int ok

$\frac{\Delta \vdash \tau_{1} \text { ok } \Delta \vdash \tau_{2} \text { ok }}{\Delta \vdash \tau_{1} \rightarrow \tau_{2} \text { ok }}$

Type Well-Formedness

$$
\frac{X \in \Delta}{\Delta \vdash X \mathrm{ok}}
$$

$\overline{\Delta \vdash \text { int ok }}$

$\frac{\Delta \vdash \tau_{1} \text { ok } \Delta \vdash \tau_{2} \text { ok }}{\Delta \vdash \tau_{1} \rightarrow \tau_{2} \text { ok }}$
$\frac{\Delta \cup\{X\} \vdash \tau \text { ok }}{\Delta \vdash \forall X . \tau \text { ok }}$

Example: Doubling Redux

Let's consider the doubling operation again.

Example: Doubling Redux

Let's consider the doubling operation again.

We can write a polymorphic doubling operation as

$$
\text { double } \triangleq \Lambda X . \lambda f: X \rightarrow X . \lambda x: X . f(f x)
$$

Example: Doubling Redux

Let's consider the doubling operation again.

We can write a polymorphic doubling operation as

$$
\text { double } \triangleq \Lambda X . \lambda f: X \rightarrow X . \lambda x: X . f(f x)
$$

The type of this expression is: $\forall X .(X \rightarrow X) \rightarrow X \rightarrow X$

Example: Doubling Redux

Let's consider the doubling operation again.
We can write a polymorphic doubling operation as

$$
\text { double } \triangleq \Lambda X . \lambda f: X \rightarrow X . \lambda x: X . f(f x)
$$

The type of this expression is: $\forall X .(X \rightarrow X) \rightarrow X \rightarrow X$
We can instantiate this on a type, and provide arguments:

Example: Doubling Redux

Let's consider the doubling operation again.
We can write a polymorphic doubling operation as

$$
\text { double } \triangleq \Lambda X . \lambda f: X \rightarrow X . \lambda x: X . f(f x)
$$

The type of this expression is: $\forall X .(X \rightarrow X) \rightarrow X \rightarrow X$

We can instantiate this on a type, and provide arguments:

$$
\text { double [int] }(\lambda n: \text { int. } n+1) 7
$$

Example: Doubling Redux

Let's consider the doubling operation again.
We can write a polymorphic doubling operation as

$$
\text { double } \triangleq \Lambda X . \lambda f: X \rightarrow X . \lambda x: X . f(f x)
$$

The type of this expression is: $\forall X .(X \rightarrow X) \rightarrow X \rightarrow X$

We can instantiate this on a type, and provide arguments:

$$
\begin{aligned}
& \text { double }[\text { int }](\lambda n: \text { int. } n+1) 7 \\
\rightarrow & (\lambda f: \text { int } \rightarrow \text { int. } \lambda x: \text { int. } f(f x))(\lambda n: \text { int. } n+1) 7
\end{aligned}
$$

Example: Doubling Redux

Let's consider the doubling operation again.
We can write a polymorphic doubling operation as

$$
\text { double } \triangleq \Lambda X . \lambda f: X \rightarrow X . \lambda x: X . f(f x)
$$

The type of this expression is: $\forall X .(X \rightarrow X) \rightarrow X \rightarrow X$

We can instantiate this on a type, and provide arguments:

$$
\begin{aligned}
& \text { double }[\text { int }](\lambda n: \text { int. } n+1) 7 \\
\rightarrow & (\lambda f: \text { int } \rightarrow \text { int. } \lambda x: \text { int. } f(f x))(\lambda n: \text { int. } n+1) 7 \\
\rightarrow & 9
\end{aligned}
$$

Example: Self Application

Recall that in the simply-typed λ-calculus, we had no way of typing the expression $\lambda x . x x$.

Example: Self Application

Recall that in the simply-typed λ-calculus, we had no way of typing the expression $\lambda x . x x$.

In the polymorphic λ-calculus, however, we can type this expression using a polymorphic type:

Example: Self Application

Recall that in the simply-typed λ-calculus, we had no way of typing the expression $\lambda x . x x$.

In the polymorphic λ-calculus, however, we can type this expression using a polymorphic type:
$\vdash \quad \lambda x: \forall X \cdot X \rightarrow X \cdot x[\forall X \cdot X \rightarrow X] x:(\forall X \cdot X \rightarrow X) \rightarrow(\forall X \cdot X \rightarrow X)$
However, all expressions in polymorphic λ-calculus still halt

Example: Products

We can encode products in polymorphic λ-calculus without adding any additional types!

The encodings are based on the (untyped) Church encodings:
$\tau_{1} \times \tau_{2} \triangleq \forall R .\left(\tau_{1} \rightarrow \tau_{2} \rightarrow R\right) \rightarrow R$

Example: Products

We can encode products in polymorphic λ-calculus without adding any additional types!

The encodings are based on the (untyped) Church encodings:

$$
\begin{aligned}
& \tau_{1} \times \tau_{2} \triangleq \forall R .\left(\tau_{1} \rightarrow \tau_{2} \rightarrow R\right) \rightarrow R \\
& \quad(\cdot, \cdot) \triangleq \Lambda T_{1} . \wedge T_{2} . \lambda v_{1}: T_{1}, \lambda v_{2}: T_{2} . \wedge R . \lambda p:\left(T_{1} \rightarrow T_{2} \rightarrow R\right) . p v_{1} v_{2}
\end{aligned}
$$

Example: Products

We can encode products in polymorphic λ-calculus without adding any additional types!

The encodings are based on the (untyped) Church encodings:

$$
\begin{aligned}
& \tau_{1} \times \tau_{2} \triangleq \forall R \cdot\left(\tau_{1} \rightarrow \tau_{2} \rightarrow R\right) \rightarrow R \\
& (\cdot, \cdot) \triangleq \Lambda T_{1} \cdot \wedge T_{2} \cdot \lambda v_{1}: T_{1}, \lambda v_{2}: T_{2} \cdot \Lambda R \cdot \lambda p:\left(T_{1} \rightarrow T_{2} \rightarrow R\right) \cdot p v_{1} v_{2} \\
& \pi_{1} \triangleq \Lambda T_{1} \cdot \wedge T_{2} \cdot \lambda v: T_{1} \times T_{2} \cdot v\left[T_{1}\right]\left(\lambda x: T_{1} \cdot \lambda y: T_{2} \cdot x\right)
\end{aligned}
$$

Example: Products

We can encode products in polymorphic λ-calculus without adding any additional types!

The encodings are based on the (untyped) Church encodings:

$$
\begin{aligned}
& \tau_{1} \times \tau_{2} \triangleq \forall R \cdot\left(\tau_{1} \rightarrow \tau_{2} \rightarrow R\right) \rightarrow R \\
& (\cdot, \cdot) \triangleq \wedge T_{1} \cdot \wedge T_{2} \cdot \lambda v_{1}: T_{1}, \lambda v_{2}: T_{2} \cdot \wedge R \cdot \lambda p:\left(T_{1} \rightarrow T_{2} \rightarrow R\right) \cdot p v_{1} v_{2} \\
& \pi_{1} \triangleq \Lambda T_{1} \cdot \wedge T_{2} \cdot \lambda v: T_{1} \times T_{2} \cdot v\left[T_{1}\right]\left(\lambda x: T_{1} \cdot \lambda y: T_{2} \cdot x\right) \\
& \pi_{2} \triangleq \Lambda T_{1} \cdot \wedge T_{2} \cdot \lambda v: T_{1} \times T_{2} \cdot v\left[T_{2}\right]\left(\lambda x: T_{1} \cdot \lambda y: T_{2} \cdot y\right)
\end{aligned}
$$

Example: Products

We can encode products in polymorphic λ-calculus without adding any additional types!

The encodings are based on the (untyped) Church encodings:

$$
\begin{aligned}
& \tau_{1} \times \tau_{2} \triangleq \forall R \cdot\left(\tau_{1} \rightarrow \tau_{2} \rightarrow R\right) \rightarrow R \\
& (\cdot, \cdot) \triangleq \wedge T_{1} \cdot \wedge T_{2} \cdot \lambda v_{1}: T_{1}, \lambda v_{2}: T_{2} \cdot \wedge R \cdot \lambda p:\left(T_{1} \rightarrow T_{2} \rightarrow R\right) \cdot p v_{1} v_{2} \\
& \pi_{1} \triangleq \Lambda T_{1} \cdot \wedge T_{2} \cdot \lambda v: T_{1} \times T_{2} \cdot v\left[T_{1}\right]\left(\lambda x: T_{1} \cdot \lambda y: T_{2} \cdot x\right) \\
& \pi_{2} \triangleq \Lambda T_{1} \cdot \wedge T_{2} \cdot \lambda v: T_{1} \times T_{2} \cdot v\left[T_{2}\right]\left(\lambda x: T_{1} \cdot \lambda y: T_{2} \cdot y\right)
\end{aligned}
$$

unit $\triangleq \forall R . R \rightarrow R$

Example: Products

We can encode products in polymorphic λ-calculus without adding any additional types!

The encodings are based on the (untyped) Church encodings:

$$
\begin{aligned}
& \tau_{1} \times \tau_{2} \triangleq \forall R \cdot\left(\tau_{1} \rightarrow \tau_{2} \rightarrow R\right) \rightarrow R \\
&(\cdot, \cdot) \triangleq \Lambda T_{1} \cdot \wedge T_{2} \cdot \lambda v_{1}: T_{1}, \lambda v_{2}: T_{2} \cdot \Lambda R \cdot \lambda p:\left(T_{1} \rightarrow T_{2} \rightarrow R\right) \cdot p v_{1} v_{2} \\
& \pi_{1} \triangleq \Lambda T_{1} \cdot \wedge T_{2} \cdot \lambda v: T_{1} \times T_{2} \cdot v\left[T_{1}\right]\left(\lambda x: T_{1} \cdot \lambda y: T_{2} \cdot x\right) \\
& \pi_{2} \triangleq \Lambda T_{1} \cdot \wedge T_{2} \cdot \lambda v: T_{1} \times T_{2} \cdot v\left[T_{2}\right]\left(\lambda x: T_{1} \cdot \lambda y: T_{2} \cdot y\right) \\
& \text { unit } \triangleq \forall R \cdot R \rightarrow R \\
& \quad() \triangleq \wedge R \cdot \lambda x: R \cdot x
\end{aligned}
$$

Example: Sums

Similarly, we can encode sums in polymorphic λ-calculus without adding any additional types!

Again, the encodings are based on the (untyped) Church encodings:
$\tau_{1}+\tau_{2} \triangleq \forall R .\left(\tau_{1} \rightarrow R\right) \rightarrow\left(\tau_{2} \rightarrow R\right) \rightarrow R$

Example: Sums

Similarly, we can encode sums in polymorphic λ-calculus without adding any additional types!

Again, the encodings are based on the (untyped) Church encodings:
$\tau_{1}+\tau_{2} \triangleq \forall R .\left(\tau_{1} \rightarrow R\right) \rightarrow\left(\tau_{2} \rightarrow R\right) \rightarrow R$ $\mathrm{inl} \triangleq \Lambda T_{1} . \wedge T_{2} . \lambda v_{1}: T_{1} . \wedge R . \lambda b_{1}: T_{1} \rightarrow R . \lambda b_{2}: T_{2} \rightarrow R . b_{1} v_{1}$

Example: Sums

Similarly, we can encode sums in polymorphic λ-calculus without adding any additional types!

Again, the encodings are based on the (untyped) Church encodings:

$$
\begin{aligned}
& \tau_{1}+\tau_{2} \triangleq \forall R \cdot\left(\tau_{1} \rightarrow R\right) \rightarrow\left(\tau_{2} \rightarrow R\right) \rightarrow R \\
& \quad \mathrm{inl} \triangleq \Lambda T_{1} \cdot \wedge T_{2} \cdot \lambda v_{1}: T_{1} \cdot \wedge R \cdot \lambda b_{1}: T_{1} \rightarrow R \cdot \lambda b_{2}: T_{2} \rightarrow R \cdot b_{1} v_{1} \\
& \quad \mathrm{inr} \triangleq \Lambda T_{1} \cdot \wedge T_{2} \cdot \lambda v_{2}: T_{2} \cdot \wedge R \cdot \lambda b_{1}: T_{1} \rightarrow R \cdot \lambda b_{2}: T_{2} \rightarrow R \cdot b_{2} v_{2}
\end{aligned}
$$

Example: Sums

Similarly, we can encode sums in polymorphic λ-calculus without adding any additional types!

Again, the encodings are based on the (untyped) Church encodings:

$$
\begin{aligned}
& \tau_{1}+\tau_{2} \triangleq \forall R \cdot\left(\tau_{1} \rightarrow R\right) \rightarrow\left(\tau_{2} \rightarrow R\right) \rightarrow R \\
& \quad \mathrm{inl} \triangleq \Lambda T_{1} \cdot \wedge T_{2} \cdot \lambda v_{1}: T_{1} \cdot \wedge R \cdot \lambda b_{1}: T_{1} \rightarrow R \cdot \lambda b_{2}: T_{2} \rightarrow R \cdot b_{1} v_{1} \\
& \quad \mathrm{inr} \triangleq \Lambda T_{1} \cdot \wedge T_{2} \cdot \lambda v_{2}: T_{2} \cdot \wedge R \cdot \lambda b_{1}: T_{1} \rightarrow R \cdot \lambda b_{2}: T_{2} \rightarrow R \cdot b_{2} v_{2} \\
& \text { case } \triangleq \Lambda T_{1} \cdot \wedge T_{2} \cdot \Lambda R \cdot \lambda v: T_{1}+T_{2} \cdot \lambda b_{1}: T_{1} \rightarrow R \cdot \lambda b_{2}: T_{2} \rightarrow R \cdot v[R] b_{1} b
\end{aligned}
$$

Example: Sums

Similarly, we can encode sums in polymorphic λ-calculus without adding any additional types!

Again, the encodings are based on the (untyped) Church encodings:

$$
\begin{aligned}
& \tau_{1}+\tau_{2} \triangleq \forall R \cdot\left(\tau_{1} \rightarrow R\right) \rightarrow\left(\tau_{2} \rightarrow R\right) \rightarrow R \\
& \quad \mathrm{inl} \triangleq \Lambda T_{1} \cdot \wedge T_{2} \cdot \lambda v_{1}: T_{1} \cdot \wedge R \cdot \lambda b_{1}: T_{1} \rightarrow R \cdot \lambda b_{2}: T_{2} \rightarrow R \cdot b_{1} v_{1} \\
& \quad \mathrm{inr} \triangleq \Lambda T_{1} \cdot \wedge T_{2} \cdot \lambda v_{2}: T_{2} \cdot \wedge R \cdot \lambda b_{1}: T_{1} \rightarrow R \cdot \lambda b_{2}: T_{2} \rightarrow R \cdot b_{2} v_{2} \\
& \text { case } \triangleq \Lambda T_{1} \cdot \wedge T_{2} \cdot \Lambda R \cdot \lambda v: T_{1}+T_{2} \cdot \lambda b_{1}: T_{1} \rightarrow R \cdot \lambda b_{2}: T_{2} \rightarrow R \cdot v[R] b_{1} b
\end{aligned}
$$

void $\triangleq \forall R . R$

Type Erasure

The semantics presented above explicitly passes type but in an implementation, one often wants to eliminate types for efficiency.

Type Erasure

The semantics presented above explicitly passes type but in an implementation, one often wants to eliminate types for efficiency.

The following translation "erases" the types from a polymorphic λ-calculus expression.

Type Erasure

The semantics presented above explicitly passes type but in an implementation, one often wants to eliminate types for efficiency.

The following translation "erases" the types from a polymorphic λ-calculus expression.

$$
\operatorname{erase}(x)=x
$$

Type Erasure

The semantics presented above explicitly passes type but in an implementation, one often wants to eliminate types for efficiency.

The following translation "erases" the types from a polymorphic λ-calculus expression.

$$
\begin{aligned}
\operatorname{erase}(x) & =x \\
\operatorname{erase}(\lambda x: \tau . e) & =\lambda x . \operatorname{erase}(e)
\end{aligned}
$$

Type Erasure

The semantics presented above explicitly passes type but in an implementation, one often wants to eliminate types for efficiency.

The following translation "erases" the types from a polymorphic λ-calculus expression.

$$
\begin{aligned}
\operatorname{erase}(x) & =x \\
\operatorname{erase}(\lambda x: \tau . e) & =\lambda x . \operatorname{erase}(e) \\
\operatorname{erase}\left(e_{1} e_{2}\right) & =\operatorname{erase}\left(e_{1}\right) \operatorname{erase}\left(e_{2}\right)
\end{aligned}
$$

Type Erasure

The semantics presented above explicitly passes type but in an implementation, one often wants to eliminate types for efficiency.

The following translation "erases" the types from a polymorphic λ-calculus expression.

$$
\begin{aligned}
\operatorname{erase}(x) & =x \\
\operatorname{erase}(\lambda x: \tau . e) & =\lambda x . \operatorname{erase}(e) \\
\operatorname{crase}\left(e_{1} e_{2}\right) & =\operatorname{erase}\left(e_{1}\right) \operatorname{erase}\left(e_{2}\right) \\
\operatorname{erase}(\Lambda X . e) & =\lambda z . \operatorname{erase}(e) \quad \text { where } z \text { is fresh for } e
\end{aligned}
$$

Type Erasure

The semantics presented above explicitly passes type but in an implementation, one often wants to eliminate types for efficiency.

The following translation "erases" the types from a polymorphic λ-calculus expression.

$$
\begin{aligned}
\operatorname{erase}(x) & =x \\
\operatorname{erase}(\lambda x: \tau . e) & =\lambda x \cdot \operatorname{erase}(e) \\
\operatorname{erase}\left(e_{1} e_{2}\right) & =\operatorname{erase}\left(e_{1}\right) \operatorname{erase}\left(e_{2}\right) \\
\operatorname{erase}(\Lambda X . e) & =\lambda z \cdot \operatorname{erase}(e) \quad \text { where } z \text { is fresh for } e \\
\operatorname{erase}(e[\tau]) & =\operatorname{erase}(e)(\lambda x . x)
\end{aligned}
$$

Type Erasure

The following theorem states this translation is adequate:

Theorem (Erasure Adequacy)

For all expressions e and e^{\prime}, we have $e \rightarrow e^{\prime}$ iff erase (e) \rightarrow erase (e').

Type Inference

The type inference (or "type reconstruction") problem asks whether, for a given untyped λ-calculus expression e^{\prime} there exists a well-typed System F expression e such that erase $(e)=e^{\prime}$

Type Inference

The type inference (or "type reconstruction") problem asks whether, for a given untyped λ-calculus expression e^{\prime} there exists a well-typed System F expression e such that erase $(e)=e^{\prime}$

It was shown to be undecidable by Wells in 1994.

Type Inference

The type inference (or "type reconstruction") problem asks whether, for a given untyped λ-calculus expression e^{\prime} there exists a well-typed System F expression e such that erase $(e)=e^{\prime}$

It was shown to be undecidable by Wells in 1994.
See Chapter 23 of Pierce for further discussion, as well as restrictions for which type reconstruction is decidable.

