

CS 4110

Programming Languages & Logics

Lecture 17
Definitional Translation & Continuations

3 October 2016

Announcements

• Homework 4 returned: out of 41, x = 35.3, σ = 5.3, median 36
• Wednesday: Prelim I
• My office hours today: 1–2pm, instead of right after class

2

Products and Let

Syntax

e ::= x
| λx. e
| e1 e2
| (e1, e2)
|#1 e
|#2 e
| let x = e1 in e2

v ::= λx. e
| (v1, v2)

3

Products and Let

Evaluation Contexts

E ::= [·]
| E e
| v E
| (E, e)
| (v, E)
|#1 E
|#2 E
| let x = E in e2

4

Products and Let

Semantics

e → e′

E[e] → E[e′]

(λx. e) v → e{v/x}
β

#1 (v1, v2) → v1 #2 (v1, v2) → v2

let x = v in e → e{v/x}
5

Products and Let

Translation

T [[x]] = x
T [[λx. e]] = λx. T [[e]]
T [[e1 e2]] = T [[e1]] T [[e2]]

T [[(e1, e2)]] = (λx. λy. λf. f x y) T [[e1]] T [[e2]]
T [[#1 e]] = T [[e]] (λx. λy. x)
T [[#2 e]] = T [[e]] (λx. λy. y)

T [[let x = e1 in e2]] = (λx. T [[e2]]) T [[e1]]

6

Laziness

Consider the call-by-name λ-calculus...

Syntax

e ::= x
| e1 e2
| λx. e

v ::= λx. e

Semantics

e1 → e′1
e1 e2 → e′1 e2

(λx. e1) e2 → e1{e2/x}
β

7

Laziness

Translation

T [[x]] = x (λy. y)
T [[λx. e]] = λx. T [[e]]
T [[e1 e2]] = T [[e1]] (λz. T [[e2]]) z is not a free variable of e2

8

References

Syntax

e ::= x
| λx. e
| e0 e1

| ref e
| !e
| e1 := e2
| ℓ

v ::= λx. e

| ℓ

9

References

Syntax

e ::= x
| λx. e
| e0 e1
| ref e

| !e
| e1 := e2
| ℓ

v ::= λx. e

| ℓ

9

References

Syntax

e ::= x
| λx. e
| e0 e1
| ref e
| !e

| e1 := e2
| ℓ

v ::= λx. e

| ℓ

9

References

Syntax

e ::= x
| λx. e
| e0 e1
| ref e
| !e
| e1 := e2

| ℓ

v ::= λx. e

| ℓ

9

References

Syntax

e ::= x
| λx. e
| e0 e1
| ref e
| !e
| e1 := e2
| ℓ

v ::= λx. e

| ℓ

9

References

Syntax

e ::= x
| λx. e
| e0 e1
| ref e
| !e
| e1 := e2
| ℓ

v ::= λx. e
| ℓ

9

References

Evaluation Contexts

E ::= [·]
| E e
| v E

| ref E
| !E
| E := e
| v := E

10

References

Evaluation Contexts

E ::= [·]
| E e
| v E
| ref E

| !E
| E := e
| v := E

10

References

Evaluation Contexts

E ::= [·]
| E e
| v E
| ref E
| !E

| E := e
| v := E

10

References

Evaluation Contexts

E ::= [·]
| E e
| v E
| ref E
| !E
| E := e

| v := E

10

References

Evaluation Contexts

E ::= [·]
| E e
| v E
| ref E
| !E
| E := e
| v := E

10

References

Semantics

⟨σ, e⟩ → ⟨σ′, e′⟩
⟨σ, E[e]⟩ → ⟨σ′, E[e′]⟩

⟨σ, (λx. e) v⟩ → ⟨σ, e{v/x}⟩
β

ℓ ̸∈ dom(σ)

⟨σ, ref v⟩ → ⟨σ[ℓ 7→ v], ℓ⟩
σ(ℓ) = v

⟨σ, !ℓ⟩ → ⟨σ, v⟩

⟨σ, ℓ := v⟩ → ⟨σ[ℓ 7→ v], v⟩

11

References

Translation

...left as an exercise to the reader. ;-)

12

Adequacy

How do we know if a translation is correct?

Every target evaluation should represent a source evaluation...

Definition (Soundness)
∀e ∈ Expsrc. if T [[e]] →∗

trg v′ then ∃v. e →∗
src v

and v′ equivalent to v

...and every source evaluation should have a target evaluation:

Definition (Completeness)
∀e ∈ Expsrc. if e →∗

src v then ∃v′. T [[e]] →∗
trg v′

and v′ equivalent to v

13

Adequacy

How do we know if a translation is correct?

Every target evaluation should represent a source evaluation...

Definition (Soundness)
∀e ∈ Expsrc. if T [[e]] →∗

trg v′ then ∃v. e →∗
src v

and v′ equivalent to v

...and every source evaluation should have a target evaluation:

Definition (Completeness)
∀e ∈ Expsrc. if e →∗

src v then ∃v′. T [[e]] →∗
trg v′

and v′ equivalent to v

13

Adequacy

How do we know if a translation is correct?

Every target evaluation should represent a source evaluation...

Definition (Soundness)
∀e ∈ Expsrc. if T [[e]] →∗

trg v′ then ∃v. e →∗
src v

and v′ equivalent to v

...and every source evaluation should have a target evaluation:

Definition (Completeness)
∀e ∈ Expsrc. if e →∗

src v then ∃v′. T [[e]] →∗
trg v′

and v′ equivalent to v

13

Continuations

In the preceding translations, the control structure of the source
language was translated directly into the corresponding control
structure in the target language.

For example:

T [[λx. e]] = λx. T [[e]]
T [[e1 e2]] = T [[e1]] T [[e2]]

What can go wrong with this approach?

14

Continuations

• A snippet of code that represents “the rest of the program”

• Can be used directly by programmers...

• ...or in program transformations by a compiler

• Make the control flow of the program explicit

• Also useful for defining the meaning of features like
exceptions

15

Example

Consider the following expression:

(λx. x) ((1+ 2) + 3) + 4

If wemake all of the continuations explicit, we obtain the
following:

k0 = λv. (λx. x) v

k1 = λa. k0 (a+ 4)
k2 = λb. k1 (b+ 3)
k3 = λc. k2 (c+ 2)

The original expression is equivalent to k3 1, or:

(λc. (λb. (λa. (λv. (λx. x) v) (a+ 4)) (b+ 3)) (c+ 2)) 1

16

Example

Consider the following expression:

(λx. x) ((1+ 2) + 3) + 4

If wemake all of the continuations explicit, we obtain the
following:

k0 = λv. (λx. x) v

k1 = λa. k0 (a+ 4)
k2 = λb. k1 (b+ 3)
k3 = λc. k2 (c+ 2)

The original expression is equivalent to k3 1, or:

(λc. (λb. (λa. (λv. (λx. x) v) (a+ 4)) (b+ 3)) (c+ 2)) 1

16

Example

Consider the following expression:

(λx. x) ((1+ 2) + 3) + 4

If wemake all of the continuations explicit, we obtain the
following:

k0 = λv. (λx. x) v

k1 = λa. k0 (a+ 4)
k2 = λb. k1 (b+ 3)
k3 = λc. k2 (c+ 2)

The original expression is equivalent to k3 1, or:

(λc. (λb. (λa. (λv. (λx. x) v) (a+ 4)) (b+ 3)) (c+ 2)) 1

16

Example

Consider the following expression:

(λx. x) ((1+ 2) + 3) + 4

If wemake all of the continuations explicit, we obtain the
following:

k0 = λv. (λx. x) v
k1 = λa. k0 (a+ 4)

k2 = λb. k1 (b+ 3)
k3 = λc. k2 (c+ 2)

The original expression is equivalent to k3 1, or:

(λc. (λb. (λa. (λv. (λx. x) v) (a+ 4)) (b+ 3)) (c+ 2)) 1

16

Example

Consider the following expression:

(λx. x) ((1+ 2) + 3) + 4

If wemake all of the continuations explicit, we obtain the
following:

k0 = λv. (λx. x) v
k1 = λa. k0 (a+ 4)
k2 = λb. k1 (b+ 3)

k3 = λc. k2 (c+ 2)

The original expression is equivalent to k3 1, or:

(λc. (λb. (λa. (λv. (λx. x) v) (a+ 4)) (b+ 3)) (c+ 2)) 1

16

Example

Consider the following expression:

(λx. x) ((1+ 2) + 3) + 4

If wemake all of the continuations explicit, we obtain the
following:

k0 = λv. (λx. x) v
k1 = λa. k0 (a+ 4)
k2 = λb. k1 (b+ 3)
k3 = λc. k2 (c+ 2)

The original expression is equivalent to k3 1, or:

(λc. (λb. (λa. (λv. (λx. x) v) (a+ 4)) (b+ 3)) (c+ 2)) 1

16

Example

Consider the following expression:

(λx. x) ((1+ 2) + 3) + 4

If wemake all of the continuations explicit, we obtain the
following:

k0 = λv. (λx. x) v
k1 = λa. k0 (a+ 4)
k2 = λb. k1 (b+ 3)
k3 = λc. k2 (c+ 2)

The original expression is equivalent to k3 1, or:

(λc. (λb. (λa. (λv. (λx. x) v) (a+ 4)) (b+ 3)) (c+ 2)) 1
16

Example (Continued)

Recall that let x = e in e′ is syntactic sugar for (λx. e′) e.

Hence, we can rewrite the expression with continuations more
succinctly as

let c = 1 in
let b = c+ 2 in
let a = b+ 3 in
let v = a+ 4 in
(λx. x) v

17

CPS Transformation

CPS[[n]] k = k n
CPS[[e1 + e2]] k = CPS[[e1]] (λn. CPS[[e2]] (λm. k (n+m)))

CPS[[(e1, e2)]] k = CPS[[e1]] (λv. CPS[[e2]] (λw. k (v,w)))
CPS[[#1 e]] k = CPS[[e]] (λv. k (#1 v))
CPS[[#2 e]] k = CPS[[e]] (λv. k (#2 v))

CPS[[x]] k = k x
CPS[[λx. e]] k = k (λx. λk′. CPS[[e]] k′)
CPS[[e1 e2]] k = CPS[[e1]] (λf. CPS[[e2]] (λv. f v k))

Wewrite CPS[[e]] k = . . . instead of CPS[[e]] = λk. . . .

We assume that the new variables introduced are “fresh”.

18

CPS Transformation

CPS[[n]] k = k n

CPS[[e1 + e2]] k = CPS[[e1]] (λn. CPS[[e2]] (λm. k (n+m)))

CPS[[(e1, e2)]] k = CPS[[e1]] (λv. CPS[[e2]] (λw. k (v,w)))
CPS[[#1 e]] k = CPS[[e]] (λv. k (#1 v))
CPS[[#2 e]] k = CPS[[e]] (λv. k (#2 v))

CPS[[x]] k = k x
CPS[[λx. e]] k = k (λx. λk′. CPS[[e]] k′)
CPS[[e1 e2]] k = CPS[[e1]] (λf. CPS[[e2]] (λv. f v k))

Wewrite CPS[[e]] k = . . . instead of CPS[[e]] = λk. . . .

We assume that the new variables introduced are “fresh”.

18

CPS Transformation

CPS[[n]] k = k n
CPS[[e1 + e2]] k = CPS[[e1]] (λn. CPS[[e2]] (λm. k (n+m)))

CPS[[(e1, e2)]] k = CPS[[e1]] (λv. CPS[[e2]] (λw. k (v,w)))
CPS[[#1 e]] k = CPS[[e]] (λv. k (#1 v))
CPS[[#2 e]] k = CPS[[e]] (λv. k (#2 v))

CPS[[x]] k = k x
CPS[[λx. e]] k = k (λx. λk′. CPS[[e]] k′)
CPS[[e1 e2]] k = CPS[[e1]] (λf. CPS[[e2]] (λv. f v k))

Wewrite CPS[[e]] k = . . . instead of CPS[[e]] = λk. . . .

We assume that the new variables introduced are “fresh”.

18

CPS Transformation

CPS[[n]] k = k n
CPS[[e1 + e2]] k = CPS[[e1]] (λn. CPS[[e2]] (λm. k (n+m)))

CPS[[(e1, e2)]] k = CPS[[e1]] (λv. CPS[[e2]] (λw. k (v,w)))

CPS[[#1 e]] k = CPS[[e]] (λv. k (#1 v))
CPS[[#2 e]] k = CPS[[e]] (λv. k (#2 v))

CPS[[x]] k = k x
CPS[[λx. e]] k = k (λx. λk′. CPS[[e]] k′)
CPS[[e1 e2]] k = CPS[[e1]] (λf. CPS[[e2]] (λv. f v k))

Wewrite CPS[[e]] k = . . . instead of CPS[[e]] = λk. . . .

We assume that the new variables introduced are “fresh”.

18

CPS Transformation

CPS[[n]] k = k n
CPS[[e1 + e2]] k = CPS[[e1]] (λn. CPS[[e2]] (λm. k (n+m)))

CPS[[(e1, e2)]] k = CPS[[e1]] (λv. CPS[[e2]] (λw. k (v,w)))
CPS[[#1 e]] k = CPS[[e]] (λv. k (#1 v))

CPS[[#2 e]] k = CPS[[e]] (λv. k (#2 v))
CPS[[x]] k = k x

CPS[[λx. e]] k = k (λx. λk′. CPS[[e]] k′)
CPS[[e1 e2]] k = CPS[[e1]] (λf. CPS[[e2]] (λv. f v k))

Wewrite CPS[[e]] k = . . . instead of CPS[[e]] = λk. . . .

We assume that the new variables introduced are “fresh”.

18

CPS Transformation

CPS[[n]] k = k n
CPS[[e1 + e2]] k = CPS[[e1]] (λn. CPS[[e2]] (λm. k (n+m)))

CPS[[(e1, e2)]] k = CPS[[e1]] (λv. CPS[[e2]] (λw. k (v,w)))
CPS[[#1 e]] k = CPS[[e]] (λv. k (#1 v))
CPS[[#2 e]] k = CPS[[e]] (λv. k (#2 v))

CPS[[x]] k = k x
CPS[[λx. e]] k = k (λx. λk′. CPS[[e]] k′)
CPS[[e1 e2]] k = CPS[[e1]] (λf. CPS[[e2]] (λv. f v k))

Wewrite CPS[[e]] k = . . . instead of CPS[[e]] = λk. . . .

We assume that the new variables introduced are “fresh”.

18

CPS Transformation

CPS[[n]] k = k n
CPS[[e1 + e2]] k = CPS[[e1]] (λn. CPS[[e2]] (λm. k (n+m)))

CPS[[(e1, e2)]] k = CPS[[e1]] (λv. CPS[[e2]] (λw. k (v,w)))
CPS[[#1 e]] k = CPS[[e]] (λv. k (#1 v))
CPS[[#2 e]] k = CPS[[e]] (λv. k (#2 v))

CPS[[x]] k = k x

CPS[[λx. e]] k = k (λx. λk′. CPS[[e]] k′)
CPS[[e1 e2]] k = CPS[[e1]] (λf. CPS[[e2]] (λv. f v k))

Wewrite CPS[[e]] k = . . . instead of CPS[[e]] = λk. . . .

We assume that the new variables introduced are “fresh”.

18

CPS Transformation

CPS[[n]] k = k n
CPS[[e1 + e2]] k = CPS[[e1]] (λn. CPS[[e2]] (λm. k (n+m)))

CPS[[(e1, e2)]] k = CPS[[e1]] (λv. CPS[[e2]] (λw. k (v,w)))
CPS[[#1 e]] k = CPS[[e]] (λv. k (#1 v))
CPS[[#2 e]] k = CPS[[e]] (λv. k (#2 v))

CPS[[x]] k = k x
CPS[[λx. e]] k = k (λx. λk′. CPS[[e]] k′)

CPS[[e1 e2]] k = CPS[[e1]] (λf. CPS[[e2]] (λv. f v k))

Wewrite CPS[[e]] k = . . . instead of CPS[[e]] = λk. . . .

We assume that the new variables introduced are “fresh”.

18

CPS Transformation

CPS[[n]] k = k n
CPS[[e1 + e2]] k = CPS[[e1]] (λn. CPS[[e2]] (λm. k (n+m)))

CPS[[(e1, e2)]] k = CPS[[e1]] (λv. CPS[[e2]] (λw. k (v,w)))
CPS[[#1 e]] k = CPS[[e]] (λv. k (#1 v))
CPS[[#2 e]] k = CPS[[e]] (λv. k (#2 v))

CPS[[x]] k = k x
CPS[[λx. e]] k = k (λx. λk′. CPS[[e]] k′)
CPS[[e1 e2]] k = CPS[[e1]] (λf. CPS[[e2]] (λv. f v k))

Wewrite CPS[[e]] k = . . . instead of CPS[[e]] = λk. . . .

We assume that the new variables introduced are “fresh”.

18

