CS4110

Programming Languages & Logics

Lecture 17
Definitional Translation & Continuations

3 October 2016

Announcements

e Homework 4 returned: out of 41, x = 35.3, 0 = 5.3, median 36
e Wednesday: Prelim |
e My office hours today: 1-2pm, instead of right after class

Products and Let

Syntax

e =X

| \x.e

|e; e,

| (e1, €2)

| #1e

| #2e

|letx =e;ine;
Vi=X.e

| (v1,v2)

Products and Let

Evaluation Contexts

E:=[]
|Ee
|VE
| (E.e)
[(v,E)
#1E
| #2E

|letx =Eine,

Products and Let

Semantics

e—¢e
Ele] — E[€]

(M.e)v — e{v/x} ’

#1 (V17 V2) — Vi #2 (V]_7 V2) — V>

letx =vine — e{v/x}

Products and Let

Translation

TIxl = x
Tl . e] = . T|e]
Tleie] = Tlei] Tle:]
Tl(ew, e)] = (. \y. M. fxy) Tlei] Tle.]
Tl#1e] = Tle]l (Mx. \y.x)
Tl#2€] = TTe] (M- Ay.y)
Tlletx = erine] = (Mx. Te.]) Tei]

Laziness

Consider the call-by-name A-calculus...

Syntax
e =X
| €1 6
| \x. e
vVi=Mx.e
Semantics

e, — €] 8
- Ax.e;) e, — ede,/x
e1e; — €| e (ve 1{ex/x}

Laziness

Translation

T = x(Ay-y)
Tl . e] = . T|e]
Tleie:] = Tlei] (Az.T[ez]) zisnota freevariable of e,

References

Syntax

e =X
| \x. e
‘eoel

References

Syntax

e =X
| \x.e
| €0 €1
| refe

References

Syntax

e =X
| \x.e
| €0 €1
| refe
| le

References

Syntax

e =X
| \x. e
| eo €1
| refe
| le
el =€,

References

Syntax

e =X
| \x. e
| eo €1
| refe
| le
el =€,
| ¢

Vi=M.e

References

Syntax

e =X
| \x. e
| eo €1
| refe
| le
el =€,
| ¢

Vi=M.e
| ¢

References

Evaluation Contexts

E:=[]
|Ee
|VE

10

References

Evaluation Contexts

E:=[]
|Ee
|VE
| ref £

10

References

Evaluation Contexts

E:=[]
|Ee
|VE
| ref £
| 1E

10

References

Evaluation Contexts

E:=[]
|Ee
|VE
| ref £
| 1E
|E:=e

10

References

Evaluation Contexts

10

References

Semantics

(o,€) — (o, €')
(0,Ele]) — (o', E[€])

>B

(o, (Mx.e)v) — (o,e{v/x}

¢ & dom(o) o(l)=v
(o,refvy — (o[l — V], () (o, W) — (0o, V)

11

References

Translation

...left as an exercise to the reader. ;-)

12

Adequacy

How do we know if a translation is correct?

13

Adequacy

How do we know if a translation is correct?

Every target evaluation should represent a source evaluation...

Definition (Soundness)

Ve € Expg,. if T[e] —, v/ thenIv.e =5 v
and V' equivalent to v

13

Adequacy

How do we know if a translation is correct?

Every target evaluation should represent a source evaluation...

Definition (Soundness)

Ve € Expg,. if T[e] —, v/ thenIv.e =5 v
and V' equivalent to v

...and every source evaluation should have a target evaluation:

Definition (Completeness)

Ve € Expy.. ife = vthen 3V'. Tle] —¢, v
and V' equivalent to v

13

Continuations

In the preceding translations, the control structure of the source
language was translated directly into the corresponding control
structure in the target language.

For example:

Tl . e] = . T|e]
Tleie.] = Tlei] Tle:]

What can go wrong with this approach?

Continuations

A snippet of code that represents “the rest of the program”

Can be used directly by programmers...

e ..orin program transformations by a compiler

Make the control flow of the program explicit

Also useful for defining the meaning of features like
exceptions

Example

Consider the following expression:
(Mx)((1+2)+3)+4

16

Example

Consider the following expression:
(Mx)((1+2)+3)+4

If we make all of the continuations explicit, we obtain the
following:

ko = Av. (M. X) v

16

Example

Consider the following expression:
(Mx)((1+2)+3)+4

If we make all of the continuations explicit, we obtain the
following:

ko = Av. (M. X) v

16

Example

Consider the following expression:
(Mx)((1+2)+3)+4

If we make all of the continuations explicit, we obtain the
following:

ko = Av. (M. X) v
kl =)\a.ko (a—|—4)

16

Example

Consider the following expression:
(Mx)((1+2)+3)+4

If we make all of the continuations explicit, we obtain the
following:

ko = Av. (M. X) v

ki = Aa. ko (a+4)

k, = \b.ky (b+3)

16

Example

Consider the following expression:
(Mx)((1+2)+3)+4

If we make all of the continuations explicit, we obtain the
following:

ko = Av. (M. X) v

ki = Aa. ko (a+4)

k, = \b.ky (b+3)

ks = Xc. ky (c+2)

16

Example

Consider the following expression:
(Mx)((1+2)+3)+4

If we make all of the continuations explicit, we obtain the
following:

ko = Av. (M. X) v

ki = Aa. ko (a+4)

k, = \b.ky (b+3)

ks = Xc. ky (c+2)

The original expression is equivalent to ks 1, or:

(Ac. (Ab. (Aa. (Av. (M. x) v) (@ + 4)) (b +3)) (c +2)) 1

16

Example (Continued)

Recall that let x = e in €’ is syntactic sugar for (\x. €’) e.

Hence, we can rewrite the expression with continuations more
succinctly as

letc=1in

letb=c+2in
leta=b+3in
letv=a+4in

(M. x) v

17

CPS Transformation

We write CPS[e] k = ... instead of CPS[e] = Ak. ...

We assume that the new variables introduced are “fresh”.

18

CPS Transformation

CPS[n] k= kn

We write CPS[e] k = ... instead of CPS[e] = Ak. ...

We assume that the new variables introduced are “fresh”.

18

CPS Transformation

CPS[n] k=kn
CPS[e, + e] k = CPS[es] (An.CPS[es] (Am. k (n + m)))

We write CPS[e] k = ... instead of CPS[e] = Ak. ...

We assume that the new variables introduced are “fresh”.

18

CPS Transformation

CPS[nlk=kn
CPS[e; + e:] k = CPS[ei] (An.CPS[e,] (Am. k (n+ m)))
CPS|(e1,e)] k = CPS[ei] (Av.CPS[e,] (Aw. k (v, w)))

We write CPS[e] k = ... instead of CPS[e] = Ak. ...

We assume that the new variables introduced are “fresh”.

18

CPS Transformation

CPS[n]k=kn
CPS[e; + e:] k = CPS[ei] (An.CPS[e,] (Am. k (n+ m)))
CPS[(e1,e:)] k = CPS[e1] (Av.CPS[ey] (Aw. k (v,w)))
CPS[#1e] k =CPS[e] (Av.k (#1v))

We write CPS[e] k = ... instead of CPS[e] = Ak. ...

We assume that the new variables introduced are “fresh”.

CPS Transformation

CPS[n]k=kn
CPS[e; + e:] k = CPS[ei] (An.CPS[e,] (Am. k (n+ m)))
CPS[(e1,e:)] k = CPS[e1] (Av.CPS[ey] (Aw. k (v,w)))
CPS[#1e] k =CPS[e] (Av.k (#1v))
CPS[#2e] k = CPS[e] (Av. k (#2V))

We write CPS[e] k = ... instead of CPS[e] = Ak. ...

We assume that the new variables introduced are “fresh”.

CPS Transformation

CPS[n]k=kn
CPS[e; + e:] k = CPS[ei] (An.CPS[e,] (Am. k (n+ m)))
CPS[(e1,e:)] k = CPS[e1] (Av.CPS[ey] (Aw. k (v,w)))
CPS[#1e] k =CPS[e] (Av.k (#1v))
CPS[#2e] k = CPS[e] (Av. k (#2V))
CPS[x] k = kx

We write CPS[e] k = ... instead of CPS[e] = Ak. ...

We assume that the new variables introduced are “fresh”.

CPS Transformation

CPS[n]k=kn
CPS[e; + e:] k = CPS[ei] (An.CPS[e,] (Am. k (n+ m)))
CPS[(e1,e:)] k = CPS[e1] (Av.CPS[ey] (Aw. k (v,w)))
CPS[#1e] k =CPS[e] (Av.k (#1v))
CPS[#2e] k = CPS[e] (Av. k (#2V))
CPS[x] k = kx
CPS[M.e] k = k(M. \K'.CPSJe] k)

We write CPS[e] k = ... instead of CPS[e] = Ak. ...

We assume that the new variables introduced are “fresh”.

CPS Transformation

CPS[n]k=kn
CPS[e; + e:] k = CPS[ei] (An.CPS[e,] (Am. k (n+ m)))
CPS[(e1,e:)] k = CPS[e1] (Av.CPS[ey] (Aw. k (v,w)))
CPS[#1e] k =CPS[e] (Av.k (#1v))
CPS[#2e] k = CPS[e] (Av. k (#2V))
CPS[x] k = kx
CPS[x.e] k = k(M. \K'.CPS[e] k')
CPSe:1 er] k = CPS[ei] (M.CPSJes] (Av.fvk))

We write CPS[e] k = ... instead of CPS[e] = Ak. ...

We assume that the new variables introduced are “fresh”.

