CS 4110

Programming Languages & Logics

Lecture 16 Programming in the λ -calculus

30 September 2016

Review: Church Booleans

We can encode TRUE, FALSE, and IF, as:

$$\mathsf{TRUE} \triangleq \lambda x. \ \lambda y. \ x$$
$$\mathsf{FALSE} \triangleq \lambda x. \ \lambda y. \ y$$
$$\mathsf{IF} \triangleq \lambda b. \ \lambda t. \ \lambda f. \ b \ t \ f$$

This way, IF behaves how it ought to:

IF TRUE $v_t v_f \rightarrow v_t$ IF FALSE $v_t v_f \rightarrow v_f$

 $\overline{0} \triangleq \lambda f. \lambda x. x$ $\overline{1} \triangleq \lambda f. \lambda x. f x$ $\overline{2} \triangleq \lambda f. \lambda x. f(f x)$

SUCC
$$\triangleq \lambda n. \lambda f. \lambda x. f(n f x)$$

 $\overline{0} \triangleq \lambda f. \lambda x. x$ $\overline{1} \triangleq \lambda f. \lambda x. f x$ $\overline{2} \triangleq \lambda f. \lambda x. f(f x)$

SUCC
$$\triangleq \lambda n. \lambda f. \lambda x. f(n f x)$$

PLUS $\triangleq \lambda n_1. \lambda n_2. n_1$ SUCC n_2

$$\overline{\mathbf{0}} \triangleq \lambda f. \, \lambda x. \, x \overline{\mathbf{1}} \triangleq \lambda f. \, \lambda x. \, f \, x \overline{\mathbf{2}} \triangleq \lambda f. \, \lambda x. \, f \, (f \, x)$$

SUCC
$$\triangleq \lambda n. \lambda f. \lambda x. f(n f x)$$

PLUS $\triangleq \lambda n_1. \lambda n_2. n_1$ SUCC n_2
TIMES $\triangleq \lambda n_1. \lambda n_2. n_1$ (PLUS n_2) $\overline{0}$

$$\overline{\mathbf{0}} \triangleq \lambda f. \lambda x. x \overline{\mathbf{1}} \triangleq \lambda f. \lambda x. f x \overline{\mathbf{2}} \triangleq \lambda f. \lambda x. f (f x)$$

SUCC
$$\triangleq \lambda n. \lambda f. \lambda x. f(n f x)$$

PLUS $\triangleq \lambda n_1. \lambda n_2. n_1$ SUCC n_2
TIMES $\triangleq \lambda n_1. \lambda n_2. n_1$ (PLUS n_2) $\overline{0}$
SZERO $\triangleq \lambda n. n (\lambda z. FALSE)$ TRUE

Recursive Functions

How would we write recursive functions like factorial?

How would we write recursive functions like factorial?

We'd like to write it like this...

FACT $\triangleq \lambda n$. IF (ISZERO *n*) 1 (TIMES *n* (FACT (PRED *n*)))

How would we write recursive functions like factorial?

We'd like to write it like this...

FACT $\triangleq \lambda n$. IF (ISZERO *n*) 1 (TIMES *n* (FACT (PRED *n*)))

In slightly more readable notation this is...

FACT
$$\triangleq \lambda n$$
. if $n = 0$ then 1 else $n \times$ FACT $(n - 1)$

...but this is an equation, not a definition!

Recursion removal trick

We can perform a "trick" to define a function FACT that satisfies the recursive equation on the previous slide. We can perform a "trick" to define a function FACT that satisfies the recursive equation on the previous slide.

Define a new function FACT':

FACT' $\triangleq \lambda f. \lambda n.$ if n = 0 then 1 else $n \times (ff(n-1))$

We can perform a "trick" to define a function FACT that satisfies the recursive equation on the previous slide.

Define a new function FACT':

FACT' $\triangleq \lambda f. \lambda n.$ if n = 0 then 1 else $n \times (ff(n-1))$

Then define FACT as FACT' applied to itself:

 $\mathsf{FACT} \triangleq \mathsf{FACT'} \ \mathsf{FACT'}$

Let's try evaluating FACT on 3...

FACT 3

```
Let's try evaluating FACT on 3...
FACT 3 = (FACT' FACT') 3
```

Let's try evaluating FACT on 3...

FACT 3 = (FACT' FACT') 3 = $((\lambda f. \lambda n. \text{ if } n = 0 \text{ then } 1 \text{ else } n \times (ff(n-1))) \text{ FACT'}) 3$

Let's try evaluating FACT on 3...

FACT 3 = (FACT' FACT') 3 = $((\lambda f. \lambda n. \text{ if } n = 0 \text{ then } 1 \text{ else } n \times (ff(n-1))) \text{ FACT'}) 3$ $\rightarrow (\lambda n. \text{ if } n = 0 \text{ then } 1 \text{ else } n \times (\text{FACT' FACT'} (n-1))) 3$

FACT 3 = (FACT' FACT') 3
=
$$((\lambda f, \lambda n, \text{ if } n = 0 \text{ then } 1 \text{ else } n \times (ff(n-1))) \text{ FACT'}) 3$$

 $\rightarrow (\lambda n, \text{ if } n = 0 \text{ then } 1 \text{ else } n \times (\text{FACT' FACT'} (n-1))) 3$
 $\rightarrow \text{ if } 3 = 0 \text{ then } 1 \text{ else } 3 \times (\text{FACT' FACT'} (3-1))$

FACT 3 = (FACT' FACT') 3
=
$$((\lambda f. \lambda n. \text{ if } n = 0 \text{ then } 1 \text{ else } n \times (ff(n-1))) \text{ FACT'}) 3$$

 $\rightarrow (\lambda n. \text{ if } n = 0 \text{ then } 1 \text{ else } n \times (\text{FACT' FACT'} (n-1))) 3$
 $\rightarrow \text{ if } 3 = 0 \text{ then } 1 \text{ else } 3 \times (\text{FACT' FACT'} (3-1))$
 $\rightarrow 3 \times (\text{FACT' FACT'} (3-1))$

FACT 3 = (FACT' FACT') 3
=
$$((\lambda f. \lambda n. \text{ if } n = 0 \text{ then } 1 \text{ else } n \times (ff(n-1))) \text{ FACT'}) 3$$

 $\rightarrow (\lambda n. \text{ if } n = 0 \text{ then } 1 \text{ else } n \times (\text{FACT' FACT'} (n-1))) 3$
 $\rightarrow \text{ if } 3 = 0 \text{ then } 1 \text{ else } 3 \times (\text{FACT' FACT'} (3-1))$
 $\rightarrow 3 \times (\text{FACT' FACT'} (3-1))$
 $= 3 \times (\text{FACT} (3-1))$

FACT 3 = (FACT' FACT') 3
=
$$((\lambda f. \lambda n. \text{ if } n = 0 \text{ then } 1 \text{ else } n \times (ff(n-1))) \text{ FACT'}) 3$$

 $\rightarrow (\lambda n. \text{ if } n = 0 \text{ then } 1 \text{ else } n \times (\text{FACT' FACT'} (n-1))) 3$
 $\rightarrow \text{ if } 3 = 0 \text{ then } 1 \text{ else } 3 \times (\text{FACT' FACT'} (3-1))$
 $\rightarrow 3 \times (\text{FACT' FACT'} (3-1))$
 $= 3 \times (\text{FACT} (3-1))$
 $\rightarrow \dots$
 $\rightarrow 3 \times 2 \times 1 \times 1$

FACT 3 = (FACT' FACT') 3
=
$$((\lambda f. \lambda n. \text{ if } n = 0 \text{ then } 1 \text{ else } n \times (ff(n-1))) \text{ FACT'}) 3$$

 $\rightarrow (\lambda n. \text{ if } n = 0 \text{ then } 1 \text{ else } n \times (\text{FACT' FACT'} (n-1))) 3$
 $\rightarrow \text{ if } 3 = 0 \text{ then } 1 \text{ else } 3 \times (\text{FACT' FACT'} (3-1))$
 $\rightarrow 3 \times (\text{FACT' FACT'} (3-1))$
 $= 3 \times (\text{FACT} (3-1))$
 $\rightarrow \dots$
 $\rightarrow 3 \times 2 \times 1 \times 1$
 $\rightarrow^* 6$

FACT 3 = (FACT' FACT') 3
=
$$((\lambda f. \lambda n. \text{ if } n = 0 \text{ then } 1 \text{ else } n \times (ff(n-1))) \text{ FACT'}) 3$$

 $\rightarrow (\lambda n. \text{ if } n = 0 \text{ then } 1 \text{ else } n \times (\text{FACT' FACT'} (n-1))) 3$
 $\rightarrow \text{ if } 3 = 0 \text{ then } 1 \text{ else } 3 \times (\text{FACT' FACT'} (3-1))$
 $\rightarrow 3 \times (\text{FACT' FACT'} (3-1))$
 $= 3 \times (\text{FACT} (3-1))$
 $\rightarrow \dots$
 $\rightarrow 3 \times 2 \times 1 \times 1$
 $\rightarrow^* 6$

Let's try evaluating FACT on 3...

FACT 3 = (FACT' FACT') 3
=
$$((\lambda f. \lambda n. \text{ if } n = 0 \text{ then } 1 \text{ else } n \times (ff(n-1))) \text{ FACT'}) 3$$

 $\rightarrow (\lambda n. \text{ if } n = 0 \text{ then } 1 \text{ else } n \times (\text{FACT' FACT' } (n-1))) 3$
 $\rightarrow \text{ if } 3 = 0 \text{ then } 1 \text{ else } 3 \times (\text{FACT' FACT' } (3-1))$
 $\rightarrow 3 \times (\text{FACT' FACT' } (3-1))$
 $= 3 \times (\text{FACT } (3-1))$
 $\rightarrow \dots$
 $\rightarrow 3 \times 2 \times 1 \times 1$
 $\rightarrow^* 6$

So we have a technique for writing recursive functions: write a function f that takes itself as an argument and define f as f' f'.

There is another way: fixed points!

There is another way: fixed points!

Consider factorial again. It is a fixed point of the following:

$$G \triangleq \lambda f. \lambda n.$$
 if $n = 0$ then 1 else $n \times (f(n-1))$

There is another way: fixed points!

Consider factorial again. It is a fixed point of the following:

$$G \triangleq \lambda f. \lambda n.$$
 if $n = 0$ then 1 else $n \times (f(n-1))$

There is another way: fixed points!

Consider factorial again. It is a fixed point of the following:

$$G \triangleq \lambda f. \lambda n.$$
 if $n = 0$ then 1 else $n \times (f(n-1))$

$$g\,5=(G\,g)\,5$$

There is another way: fixed points!

Consider factorial again. It is a fixed point of the following:

$$G \triangleq \lambda f. \lambda n.$$
 if $n = 0$ then 1 else $n \times (f(n-1))$

There is another way: fixed points!

Consider factorial again. It is a fixed point of the following:

$$G \triangleq \lambda f$$
. λn . if $n = 0$ then 1 else $n \times (f(n-1))$

$$egin{aligned} g \ 5 &= (G \ g) \ 5 \ &
ightarrow^* \ 5 imes (g \ 4) \ &= 5 imes ((G \ g) \ 4) \end{aligned}$$

How can we generate the fixed point of G?

In denotational semantics, finding fixed points took a lot of math. In the λ -calculus, we just need a suitable combinator...

Y Combinator

The (infamous) Y combinator is defined as

$$\mathsf{Y} \triangleq \lambda f. \left(\lambda x. f(x x)\right) \left(\lambda x. f(x x)\right)$$

We say that Y is a *fixed point combinator* because Y *f* is a fixed point of *f* (for any lambda term *f*).

Y Combinator

The (infamous) Y combinator is defined as

$$\mathsf{Y} \triangleq \lambda f. \left(\lambda x. f(x x)\right) \left(\lambda x. f(x x)\right)$$

We say that Y is a *fixed point combinator* because Y *f* is a fixed point of *f* (for any lambda term *f*).

What happens when we evaluate Y G under CBV?

Z Combinator

To avoid this issue, we'll use a slight variant of the Y combinator, called Z, which is easier to use under CBV.

Z Combinator

To avoid this issue, we'll use a slight variant of the Y combinator, called Z, which is easier to use under CBV.

 $\mathsf{Z} \triangleq \lambda f. \left(\lambda x. f(\lambda y. x x y)\right) \left(\lambda x. f(\lambda y. x x y)\right)$

Let's see Z in action, on our function G.

FACT

Let's see Z in action, on our function G.

FACT = ZG

Let's see Z in action, on our function G.

FACT

= ZG

$$= (\lambda f. (\lambda x. f(\lambda y. x x y)) (\lambda x. f(\lambda y. x x y))) G$$

Let's see Z in action, on our function G.

FACT

= ZG

$$= (\lambda f. (\lambda x. f(\lambda y. x x y)) (\lambda x. f(\lambda y. x x y))) G$$

$$\rightarrow \quad (\lambda x. G (\lambda y. x x y)) (\lambda x. G (\lambda y. x x y))$$

Let's see Z in action, on our function G.

FACT

- = ZG
- $= (\lambda f. (\lambda x. f (\lambda y. x x y)) (\lambda x. f (\lambda y. x x y))) G$
- $\rightarrow (\lambda x. G(\lambda y. x x y))(\lambda x. G(\lambda y. x x y))$
- $\rightarrow \quad G\left(\lambda y.\left(\lambda x.\,G\left(\lambda y.\,x\,x\,y\right)\right)\left(\lambda x.\,G\left(\lambda y.\,x\,x\,y\right)\right)y\right)$

Let's see Z in action, on our function G.

FACT = ZG= ()f()xf()

$$= (\lambda f. (\lambda x. f (\lambda y. x x y)) (\lambda x. f (\lambda y. x x y))) G$$

$$\rightarrow (\lambda x. G (\lambda y. x x y)) (\lambda x. G (\lambda y. x x y))$$

$$\rightarrow (\lambda X. G (\lambda y. X X y)) (\lambda X. G (\lambda y. X X y))$$

$$\rightarrow G(\lambda y. (\lambda x. G(\lambda y. x x y)) (\lambda x. G(\lambda y. x x y)) y)$$

$$= (\lambda f. \lambda n. \text{ if } n = 0 \text{ then } 1 \text{ else } n \times (f(n-1))) (\lambda y. (\lambda x. G(\lambda y. x x y)) (\lambda x. G(\lambda y. x x y)) y)$$

× ×

Let's see Z in action, on our function G.

FACT

= ZG

$$= (\lambda f. (\lambda x. f (\lambda y. x x y)) (\lambda x. f (\lambda y. x x y))) G$$

$$\rightarrow \quad (\lambda x. G (\lambda y. x x y)) (\lambda x. G (\lambda y. x x y))$$

- $\rightarrow \quad G\left(\lambda y.\left(\lambda x.G\left(\lambda y.xxy\right)\right)\left(\lambda x.G\left(\lambda y.xxy\right)\right)y\right)$
- $= (\lambda f. \lambda n. \text{ if } n = 0 \text{ then } 1 \text{ else } n \times (f(n-1)))$ $(\lambda y. (\lambda x. G(\lambda y. x x y)) (\lambda x. G(\lambda y. x x y)) y)$
- $\rightarrow \lambda n$. if n = 0 then 1

else $n \times ((\lambda y. (\lambda x. G (\lambda y. x x y)) (\lambda x. G (\lambda y. x x y)) y) (n - 1))$

Let's see Z in action, on our function G.

FACT = Z G= $(\lambda f. (\lambda x. f (\lambda y. x x y)) (\lambda x. f (\lambda y. x x y))) G$ $\rightarrow (\lambda x. G (\lambda y. x x y)) (\lambda x. G (\lambda y. x x y))$ $\rightarrow G (\lambda y. (\lambda x. G (\lambda y. x x y)) (\lambda x. G (\lambda y. x x y)) y)$ = $(\lambda f. \lambda n. \text{ if } n = 0 \text{ then } 1 \text{ else } n \times (f (n - 1)))$ $(\lambda y. (\lambda x. G (\lambda y. x x y)) (\lambda x. G (\lambda y. x x y)) y)$ $\rightarrow \lambda n. \text{ if } n = 0 \text{ then } 1$

else $n \times ((\lambda y. (\lambda x. G (\lambda y. x x y)) (\lambda x. G (\lambda y. x x y)) y) (n - 1))$ =_{β} $\lambda n.$ if n = 0 then 1 else $n \times (\lambda y. (Z G) y) (n - 1)$

Let's see Z in action, on our function G.

FACT 7 G _ $= (\lambda f. (\lambda x. f (\lambda y. x x y)) (\lambda x. f (\lambda y. x x y))) G$ \rightarrow ($\lambda x. G(\lambda y. x x y)$) ($\lambda x. G(\lambda y. x x y)$) \rightarrow G ($\lambda y. (\lambda x. G (\lambda y. x x y)) (\lambda x. G (\lambda y. x x y)) y$) = $(\lambda f. \lambda n. \text{ if } n = 0 \text{ then } 1 \text{ else } n \times (f(n-1)))$ $(\lambda y. (\lambda x. G (\lambda y. x x y)) (\lambda x. G (\lambda y. x x y)) y)$ $\rightarrow \lambda n$, if n = 0 then 1 else $n \times ((\lambda y. (\lambda x. G (\lambda y. x x y)) (\lambda x. G (\lambda y. x x y)) y) (n-1))$ $=_{\beta} \lambda n$. if n = 0 then 1 else $n \times (\lambda y. (Z G) y) (n - 1)$ $=_{\beta} \lambda n$. if n = 0 then 1 else $n \times (Z G (n - 1))$

Let's see Z in action, on our function G.

FACT 7 G _ $= (\lambda f. (\lambda x. f (\lambda y. x x y)) (\lambda x. f (\lambda y. x x y))) G$ \rightarrow ($\lambda x. G(\lambda y. x x y)$) ($\lambda x. G(\lambda y. x x y)$) \rightarrow G ($\lambda y. (\lambda x. G (\lambda y. x x y)) (\lambda x. G (\lambda y. x x y)) y$) = $(\lambda f. \lambda n. \text{ if } n = 0 \text{ then } 1 \text{ else } n \times (f(n-1)))$ $(\lambda y. (\lambda x. G (\lambda y. x x y)) (\lambda x. G (\lambda y. x x y)) y)$ $\rightarrow \lambda n$, if n = 0 then 1 else $n \times ((\lambda y. (\lambda x. G (\lambda y. x x y)) (\lambda x. G (\lambda y. x x y)) y) (n-1))$ $=_{\beta} \lambda n$. if n = 0 then 1 else $n \times (\lambda y. (Z G) y) (n - 1)$ $=_{\beta} \lambda n$. if n = 0 then 1 else $n \times (Z G (n - 1))$ λn . if n = 0 then 1 else $n \times (FACT(n-1))$

Other fixed point combinators

There are many (indeed infinitely many) fixed-point combinators. Here's a cute one:

where

 $L \triangleq \lambda abcdefghijklmnopqstuvwxyzr.$ (r(thisisafixedpointcombinator))

To gain some more intuition for fixed point combinators, let's derive a combinator Θ originally discovered by Turing.

To gain some more intuition for fixed point combinators, let's derive a combinator Θ originally discovered by Turing.

We know that Θ *f* is a fixed point of *f*, so we have

 $\Theta f = f(\Theta f).$

To gain some more intuition for fixed point combinators, let's derive a combinator Θ originally discovered by Turing.

We know that Θ *f* is a fixed point of *f*, so we have

 $\Theta f = f(\Theta f).$

We can write the following recursive equation:

 $\Theta = \lambda f. f(\Theta f).$

To gain some more intuition for fixed point combinators, let's derive a combinator Θ originally discovered by Turing.

We know that Θ *f* is a fixed point of *f*, so we have

 $\Theta f = f(\Theta f).$

We can write the following recursive equation:

 $\Theta = \lambda f. f(\Theta f).$

Now use the recursion removal trick:

$$\begin{array}{l} \Theta' & \triangleq \quad \lambda t. \ \lambda f. \ f \ (t \ t \ f) \\ \Theta & \triangleq \quad \Theta' \ \Theta' \end{array}$$

$\mathsf{FACT} = \Theta \, \mathsf{G}$

$FACT = \Theta G$ = (($\lambda t. \lambda f. f(t t f)$) ($\lambda t. \lambda f. f(t t f)$)) G

$FACT = \Theta G$ = (($\lambda t. \lambda f. f(ttf)$) ($\lambda t. \lambda f. f(ttf)$)) G \rightarrow ($\lambda f. f((\lambda t. \lambda f. f(ttf))$ ($\lambda t. \lambda f. f(ttf)$) f)) G

$$FACT = \Theta G$$

= (($\lambda t. \lambda f. f(t t f)$) ($\lambda t. \lambda f. f(t t f)$)) G
 \rightarrow ($\lambda f. f((\lambda t. \lambda f. f(t t f))$ ($\lambda t. \lambda f. f(t t f)$) f)) G
 \rightarrow G (($\lambda t. \lambda f. f(t t f)$) ($\lambda t. \lambda f. f(t t f)$) G)

$\theta \text{ Example}$

$$FACT = \Theta G$$

= $((\lambda t. \lambda f. f(t t f)) (\lambda t. \lambda f. f(t t f))) G$
 $\rightarrow (\lambda f. f((\lambda t. \lambda f. f(t t f)) (\lambda t. \lambda f. f(t t f)) f)) G$
 $\rightarrow G ((\lambda t. \lambda f. f(t t f)) (\lambda t. \lambda f. f(t t f)) G)$
= $G (\Theta G)$

$\theta \text{ Example}$

$$\begin{aligned} \mathsf{FACT} &= \Theta \, G \\ &= \left(\left(\lambda t. \, \lambda f. \, f\left(t \, t \, f\right) \right) \left(\lambda t. \, \lambda f. \, f\left(t \, t \, f\right) \right) \right) G \\ &\to \left(\lambda f. \, f\left((\lambda t. \, \lambda f. \, f\left(t \, t \, f\right)\right) \left(\lambda t. \, \lambda f. \, f\left(t \, t \, f\right) \right) f \right) \right) G \\ &\to G \left(\left(\lambda t. \, \lambda f. \, f\left(t \, t \, f\right) \right) \left(\lambda t. \, \lambda f. \, f\left(t \, t \, f\right) \right) G \right) \\ &= G \left(\Theta \, G \right) \\ &= \left(\lambda f. \, \lambda n. \, \text{if} \, n = 0 \, \text{then} \, 1 \, \text{else} \, n \times \left(f\left(n - 1\right) \right) \right) \left(\Theta \, G \right) \\ &\to \lambda n. \, \text{if} \, n = 0 \, \text{then} \, 1 \, \text{else} \, n \times \left(\left(\Theta \, G \right) \left(n - 1 \right) \right) \\ &= \lambda n. \, \text{if} \, n = 0 \, \text{then} \, 1 \, \text{else} \, n \times \left(\text{FACT} \left(n - 1 \right) \right) \end{aligned}$$

We know how to encode Booleans, conditionals, natural numbers, and recursion in λ -calculus.

Can we define a *real* programming language by translating everything in it into the λ -calculus?

We know how to encode Booleans, conditionals, natural numbers, and recursion in λ -calculus.

Can we define a *real* programming language by translating everything in it into the λ -calculus?

In definitional translation, we define a denotational semantics where the target is a simpler programming language instead of mathematical objects. Here are the syntax and CBV semantics of λ -calculus:

$$e ::= x \mid \lambda x. e \mid e_1 e_2$$
$$v ::= \lambda x. e$$

$$rac{e_1
ightarrow e_1'}{e_1 \, e_2
ightarrow e_1' \, e_2} \qquad rac{e
ightarrow e'}{v \, e
ightarrow v \, e'}$$

$$\frac{1}{(\lambda x. e) v \to e\{v/x\}} \beta$$

There are two kinds of rules: *congruence rules* that specify evaluation order and *computation rules* that specify the "interesting" reductions.

Evaluation Contexts

Evaluation contexts let us separate out these two kinds of rules.

Evaluation contexts let us separate out these two kinds of rules.

An evaluation context *E* is an expression with a "hole" in it: a single occurrence of the special symbol $[\cdot]$ in place of a subexpression.

 $E ::= [\cdot] \mid E e \mid v E$

Evaluation contexts let us separate out these two kinds of rules.

An evaluation context *E* is an expression with a "hole" in it: a single occurrence of the special symbol $[\cdot]$ in place of a subexpression.

 $E ::= [\cdot] \mid E e \mid v E$

We write E[e] to mean the evaluation context E where the hole has been replaced with the expression e.

$$E_1 = [\cdot] (\lambda x. x)$$
$$E_1[\lambda y. y y] = (\lambda y. y y) \lambda x. x$$

$$E_{1} = [\cdot] (\lambda x. x)$$

$$E_{1}[\lambda y. y y] = (\lambda y. y y) \lambda x. x$$

$$E_{2} = (\lambda z. z z) [\cdot]$$

$$E_{2}[\lambda x. \lambda y. x] = (\lambda z. z z) (\lambda x. \lambda y. x)$$

$$E_{1} = [\cdot] (\lambda x. x)$$

$$E_{1}[\lambda y. y y] = (\lambda y. y y) \lambda x. x$$

$$E_{2} = (\lambda z. z z) [\cdot]$$

$$E_{2}[\lambda x. \lambda y. x] = (\lambda z. z z) (\lambda x. \lambda y. x)$$

$$E_{3} = ([\cdot] \lambda x. x x) ((\lambda y. y) (\lambda y. y))$$

$$E_{3}[\lambda f. \lambda g. f g] = ((\lambda f. \lambda g. f g) \lambda x. x x) ((\lambda y. y) (\lambda y. y))$$

CBV With Evaluation Contexts

With evaluation contexts, we can define the evaluation semantics for the CBV λ -calculus with just two rules: one for evaluation contexts, and one for β -reduction.

CBV With Evaluation Contexts

With evaluation contexts, we can define the evaluation semantics for the CBV λ -calculus with just two rules: one for evaluation contexts, and one for β -reduction.

With this syntax:

$$E ::= [\cdot] \mid E e \mid v E$$

The small-step rules are:

$$e
ightarrow e'$$

 $E[e]
ightarrow E[e']$

$$\frac{1}{(\lambda x. e) v \to e\{v/x\}} \beta$$

CBN With Evaluation Contexts

We can also define the semantics of CBN λ -calculus with evaluation contexts.

CBN With Evaluation Contexts

We can also define the semantics of CBN λ -calculus with evaluation contexts.

For call-by-name, the syntax for evaluation contexts is different:

 $E ::= [\cdot] \mid E e$

CBN With Evaluation Contexts

We can also define the semantics of CBN λ -calculus with evaluation contexts.

For call-by-name, the syntax for evaluation contexts is different:

 $E::=[\cdot]\mid E\,e$

But the small-step rules are the same:

$$\frac{e \to e'}{E[e] \to E[e']}$$

$$\overline{(\lambda x. e) e' \rightarrow e\{e'/x\}} \ ^{eta}$$

Multi-Argument λ -calculus

Let's define a version of the λ -calculus that allows functions to take multiple arguments.

$$e ::= x \mid \lambda x_1, \ldots, x_n. e \mid e_0 e_1 \ldots e_n$$

Multi-Argument λ -calculus

We can define a CBV operational semantics:

$$E ::= [\cdot] \mid v_0 \ldots v_{i-1} E e_{i+1} \ldots e_n$$

$$e
ightarrow e'$$

 $\overline{E[e]
ightarrow E[e']}$

$$\overline{(\lambda x_1,\ldots,x_n,e_0)\,v_1\,\ldots\,v_n\to e_0\{v_1/x_1\}\{v_2/x_2\}\ldots\{v_n/x_n\}}^{\beta}$$

The evaluation contexts ensure that we evaluate multi-argument applications $e_0 e_1 \dots e_n$ from left to right.

Definitional Translation

The multi-argument λ -calculus isn't any more expressive that the pure λ -calculus.

The multi-argument λ -calculus isn't any more expressive that the pure λ -calculus.

We can define a translation $\mathcal{T}[\cdot]$ that takes an expression in the multi-argument λ -calculus and returns an equivalent expression in the pure λ -calculus.

The multi-argument λ -calculus isn't any more expressive that the pure λ -calculus.

We can define a translation $\mathcal{T}[\cdot]$ that takes an expression in the multi-argument λ -calculus and returns an equivalent expression in the pure λ -calculus.

$$\mathcal{T}\llbracket x \rrbracket = x$$

$$\mathcal{T}\llbracket \lambda x_1, \dots, x_n. e \rrbracket = \lambda x_1, \dots, \lambda x_n. \mathcal{T}\llbracket e \rrbracket$$

$$\mathcal{T}\llbracket e_0 e_1 e_2 \dots e_n \rrbracket = (\dots ((\mathcal{T}\llbracket e_0 \rrbracket \mathcal{T}\llbracket e_1 \rrbracket) \mathcal{T}\llbracket e_2 \rrbracket) \dots \mathcal{T}\llbracket e_n \rrbracket)$$

This translation *curries* the multi-argument λ -calculus.