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Review: Church Booleans

We can encode TRUE, FALSE, and IF, as:

TRUE ≜ λx. λy. x

FALSE ≜ λx. λy. y

IF ≜ λb. λt. λf. b t f

This way, IF behaves how it ought to:

IF TRUE vt vf →∗ vt
IF FALSE vt vf →∗ vf
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Review: Church Numerals

Church numerals encode a number n as a function that takes f
and x, and applies f to x n times.

0 ≜ λf. λx. x
1 ≜ λf. λx. f x
2 ≜ λf. λx. f (f x)

We can define other functions on integers:

SUCC ≜ λn. λf. λx. f (n f x)

PLUS ≜ λn1. λn2. n1 SUCC n2
TIMES ≜ λn1. λn2. n1 (PLUS n2) 0

ISZERO ≜ λn. n (λz. FALSE) TRUE
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Recursive Functions

Howwould we write recursive functions like factorial?

We’d like to write it like this...

FACT ≜ λn. IF (ISZERO n) 1 (TIMES n (FACT (PRED n)))

In slightly more readable notation this is...

FACT ≜ λn. if n = 0 then 1 else n× FACT (n− 1)

...but this is an equation, not a definition!
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Recursion removal trick

We can perform a “trick” to define a function FACT that satisfies
the recursive equation on the previous slide.

Define a new function FACT′:

FACT′ ≜ λf. λn. if n = 0 then 1 else n× (f f (n− 1))

Then define FACT as FACT′ applied to itself:

FACT ≜ FACT′ FACT′
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Example

Let’s try evaluating FACT on 3...

FACT 3

= (FACT′ FACT′) 3
= ((λf. λn. if n = 0 then 1 else n× (f f (n− 1))) FACT′) 3
→ (λn. if n = 0 then 1 else n× (FACT′ FACT′ (n− 1))) 3
→ if 3 = 0 then 1 else 3× (FACT′ FACT′ (3− 1))
→ 3× (FACT′ FACT′ (3− 1))
= 3× (FACT (3− 1))
→ . . .

→ 3× 2× 1× 1
→∗ 6

So we have a technique for writing recursive functions: write a
function f′ that takes itself as an argument and define f as f′ f′.

6



Example

Let’s try evaluating FACT on 3...

FACT 3 = (FACT′ FACT′) 3

= ((λf. λn. if n = 0 then 1 else n× (f f (n− 1))) FACT′) 3
→ (λn. if n = 0 then 1 else n× (FACT′ FACT′ (n− 1))) 3
→ if 3 = 0 then 1 else 3× (FACT′ FACT′ (3− 1))
→ 3× (FACT′ FACT′ (3− 1))
= 3× (FACT (3− 1))
→ . . .

→ 3× 2× 1× 1
→∗ 6

So we have a technique for writing recursive functions: write a
function f′ that takes itself as an argument and define f as f′ f′.

6



Example

Let’s try evaluating FACT on 3...

FACT 3 = (FACT′ FACT′) 3
= ((λf. λn. if n = 0 then 1 else n× (f f (n− 1))) FACT′) 3

→ (λn. if n = 0 then 1 else n× (FACT′ FACT′ (n− 1))) 3
→ if 3 = 0 then 1 else 3× (FACT′ FACT′ (3− 1))
→ 3× (FACT′ FACT′ (3− 1))
= 3× (FACT (3− 1))
→ . . .

→ 3× 2× 1× 1
→∗ 6

So we have a technique for writing recursive functions: write a
function f′ that takes itself as an argument and define f as f′ f′.

6



Example

Let’s try evaluating FACT on 3...

FACT 3 = (FACT′ FACT′) 3
= ((λf. λn. if n = 0 then 1 else n× (f f (n− 1))) FACT′) 3
→ (λn. if n = 0 then 1 else n× (FACT′ FACT′ (n− 1))) 3

→ if 3 = 0 then 1 else 3× (FACT′ FACT′ (3− 1))
→ 3× (FACT′ FACT′ (3− 1))
= 3× (FACT (3− 1))
→ . . .

→ 3× 2× 1× 1
→∗ 6

So we have a technique for writing recursive functions: write a
function f′ that takes itself as an argument and define f as f′ f′.

6



Example

Let’s try evaluating FACT on 3...

FACT 3 = (FACT′ FACT′) 3
= ((λf. λn. if n = 0 then 1 else n× (f f (n− 1))) FACT′) 3
→ (λn. if n = 0 then 1 else n× (FACT′ FACT′ (n− 1))) 3
→ if 3 = 0 then 1 else 3× (FACT′ FACT′ (3− 1))

→ 3× (FACT′ FACT′ (3− 1))
= 3× (FACT (3− 1))
→ . . .

→ 3× 2× 1× 1
→∗ 6

So we have a technique for writing recursive functions: write a
function f′ that takes itself as an argument and define f as f′ f′.

6



Example

Let’s try evaluating FACT on 3...

FACT 3 = (FACT′ FACT′) 3
= ((λf. λn. if n = 0 then 1 else n× (f f (n− 1))) FACT′) 3
→ (λn. if n = 0 then 1 else n× (FACT′ FACT′ (n− 1))) 3
→ if 3 = 0 then 1 else 3× (FACT′ FACT′ (3− 1))
→ 3× (FACT′ FACT′ (3− 1))

= 3× (FACT (3− 1))
→ . . .

→ 3× 2× 1× 1
→∗ 6

So we have a technique for writing recursive functions: write a
function f′ that takes itself as an argument and define f as f′ f′.

6



Example

Let’s try evaluating FACT on 3...

FACT 3 = (FACT′ FACT′) 3
= ((λf. λn. if n = 0 then 1 else n× (f f (n− 1))) FACT′) 3
→ (λn. if n = 0 then 1 else n× (FACT′ FACT′ (n− 1))) 3
→ if 3 = 0 then 1 else 3× (FACT′ FACT′ (3− 1))
→ 3× (FACT′ FACT′ (3− 1))
= 3× (FACT (3− 1))

→ . . .

→ 3× 2× 1× 1
→∗ 6

So we have a technique for writing recursive functions: write a
function f′ that takes itself as an argument and define f as f′ f′.

6



Example

Let’s try evaluating FACT on 3...

FACT 3 = (FACT′ FACT′) 3
= ((λf. λn. if n = 0 then 1 else n× (f f (n− 1))) FACT′) 3
→ (λn. if n = 0 then 1 else n× (FACT′ FACT′ (n− 1))) 3
→ if 3 = 0 then 1 else 3× (FACT′ FACT′ (3− 1))
→ 3× (FACT′ FACT′ (3− 1))
= 3× (FACT (3− 1))
→ . . .

→ 3× 2× 1× 1

→∗ 6

So we have a technique for writing recursive functions: write a
function f′ that takes itself as an argument and define f as f′ f′.

6



Example

Let’s try evaluating FACT on 3...

FACT 3 = (FACT′ FACT′) 3
= ((λf. λn. if n = 0 then 1 else n× (f f (n− 1))) FACT′) 3
→ (λn. if n = 0 then 1 else n× (FACT′ FACT′ (n− 1))) 3
→ if 3 = 0 then 1 else 3× (FACT′ FACT′ (3− 1))
→ 3× (FACT′ FACT′ (3− 1))
= 3× (FACT (3− 1))
→ . . .

→ 3× 2× 1× 1
→∗ 6

So we have a technique for writing recursive functions: write a
function f′ that takes itself as an argument and define f as f′ f′.

6



Example

Let’s try evaluating FACT on 3...

FACT 3 = (FACT′ FACT′) 3
= ((λf. λn. if n = 0 then 1 else n× (f f (n− 1))) FACT′) 3
→ (λn. if n = 0 then 1 else n× (FACT′ FACT′ (n− 1))) 3
→ if 3 = 0 then 1 else 3× (FACT′ FACT′ (3− 1))
→ 3× (FACT′ FACT′ (3− 1))
= 3× (FACT (3− 1))
→ . . .

→ 3× 2× 1× 1
→∗ 6

So we have a technique for writing recursive functions: write a
function f′ that takes itself as an argument and define f as f′ f′.

6



Example

Let’s try evaluating FACT on 3...

FACT 3 = (FACT′ FACT′) 3
= ((λf. λn. if n = 0 then 1 else n× (f f (n− 1))) FACT′) 3
→ (λn. if n = 0 then 1 else n× (FACT′ FACT′ (n− 1))) 3
→ if 3 = 0 then 1 else 3× (FACT′ FACT′ (3− 1))
→ 3× (FACT′ FACT′ (3− 1))
= 3× (FACT (3− 1))
→ . . .

→ 3× 2× 1× 1
→∗ 6

So we have a technique for writing recursive functions: write a
function f′ that takes itself as an argument and define f as f′ f′.

6



Fixed point combinators

There is another way: fixed points!

Consider factorial again. It is a fixed point of the following:

G ≜ λf. λn. if n = 0 then 1 else n× (f (n− 1))

Recall that if g if a fixed point of G, then G g = g. To see that any
fixed point g is a real factorial function, try evaluating it:

g 5

= (G g) 5
→∗ 5× (g 4)
= 5× ((G g) 4)

7



Fixed point combinators

There is another way: fixed points!

Consider factorial again. It is a fixed point of the following:

G ≜ λf. λn. if n = 0 then 1 else n× (f (n− 1))

Recall that if g if a fixed point of G, then G g = g. To see that any
fixed point g is a real factorial function, try evaluating it:

g 5

= (G g) 5
→∗ 5× (g 4)
= 5× ((G g) 4)

7



Fixed point combinators

There is another way: fixed points!

Consider factorial again. It is a fixed point of the following:

G ≜ λf. λn. if n = 0 then 1 else n× (f (n− 1))

Recall that if g if a fixed point of G, then G g = g. To see that any
fixed point g is a real factorial function, try evaluating it:

g 5

= (G g) 5
→∗ 5× (g 4)
= 5× ((G g) 4)

7



Fixed point combinators

There is another way: fixed points!

Consider factorial again. It is a fixed point of the following:

G ≜ λf. λn. if n = 0 then 1 else n× (f (n− 1))

Recall that if g if a fixed point of G, then G g = g. To see that any
fixed point g is a real factorial function, try evaluating it:

g 5 = (G g) 5

→∗ 5× (g 4)
= 5× ((G g) 4)

7



Fixed point combinators

There is another way: fixed points!

Consider factorial again. It is a fixed point of the following:

G ≜ λf. λn. if n = 0 then 1 else n× (f (n− 1))

Recall that if g if a fixed point of G, then G g = g. To see that any
fixed point g is a real factorial function, try evaluating it:

g 5 = (G g) 5
→∗ 5× (g 4)

= 5× ((G g) 4)

7



Fixed point combinators

There is another way: fixed points!

Consider factorial again. It is a fixed point of the following:

G ≜ λf. λn. if n = 0 then 1 else n× (f (n− 1))

Recall that if g if a fixed point of G, then G g = g. To see that any
fixed point g is a real factorial function, try evaluating it:

g 5 = (G g) 5
→∗ 5× (g 4)
= 5× ((G g) 4)

7



Fixed point combinators

How can we generate the fixed point of G?

In denotational semantics, finding fixed points took a lot of
math. In the λ-calculus, we just need a suitable combinator...
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Y Combinator

The (infamous) Y combinator is defined as

Y ≜ λf. (λx. f (x x)) (λx. f (x x))

We say that Y is a fixed point combinator because Y f is a fixed
point of f (for any lambda term f).

What happens when we evaluate Y G under CBV?
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Z Combinator

To avoid this issue, we’ll use a slight variant of the Y combinator,
called Z, which is easier to use under CBV.

Z ≜ λf. (λx. f (λy. x x y)) (λx. f (λy. x x y))
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Example

Let’s see Z in action, on our function G.

FACT

= Z G
= (λf. (λx. f (λy. x x y)) (λx. f (λy. x x y))) G Definition of Z
→ (λx.G (λy. x x y)) (λx.G (λy. x x y))
→ G (λy. (λx.G (λy. x x y)) (λx.G (λy. x x y)) y)
= (λf. λn. if n = 0 then 1 else n× (f (n− 1)))

(λy. (λx.G (λy. x x y)) (λx.G (λy. x x y)) y)
→ λn. if n = 0 then 1

else n× ((λy. (λx.G (λy. x x y)) (λx.G (λy. x x y)) y) (n− 1))
=β λn. if n = 0 then 1 else n× (λy. (Z G) y) (n− 1)
=β λn. if n = 0 then 1 else n× (Z G (n− 1))
= λn. if n = 0 then 1 else n× (FACT (n− 1))

11



Example

Let’s see Z in action, on our function G.

FACT
= Z G

= (λf. (λx. f (λy. x x y)) (λx. f (λy. x x y))) G Definition of Z
→ (λx.G (λy. x x y)) (λx.G (λy. x x y))
→ G (λy. (λx.G (λy. x x y)) (λx.G (λy. x x y)) y)
= (λf. λn. if n = 0 then 1 else n× (f (n− 1)))

(λy. (λx.G (λy. x x y)) (λx.G (λy. x x y)) y)
→ λn. if n = 0 then 1

else n× ((λy. (λx.G (λy. x x y)) (λx.G (λy. x x y)) y) (n− 1))
=β λn. if n = 0 then 1 else n× (λy. (Z G) y) (n− 1)
=β λn. if n = 0 then 1 else n× (Z G (n− 1))
= λn. if n = 0 then 1 else n× (FACT (n− 1))

11



Example

Let’s see Z in action, on our function G.

FACT
= Z G
= (λf. (λx. f (λy. x x y)) (λx. f (λy. x x y))) G Definition of Z

→ (λx.G (λy. x x y)) (λx.G (λy. x x y))
→ G (λy. (λx.G (λy. x x y)) (λx.G (λy. x x y)) y)
= (λf. λn. if n = 0 then 1 else n× (f (n− 1)))

(λy. (λx.G (λy. x x y)) (λx.G (λy. x x y)) y)
→ λn. if n = 0 then 1

else n× ((λy. (λx.G (λy. x x y)) (λx.G (λy. x x y)) y) (n− 1))
=β λn. if n = 0 then 1 else n× (λy. (Z G) y) (n− 1)
=β λn. if n = 0 then 1 else n× (Z G (n− 1))
= λn. if n = 0 then 1 else n× (FACT (n− 1))

11



Example

Let’s see Z in action, on our function G.

FACT
= Z G
= (λf. (λx. f (λy. x x y)) (λx. f (λy. x x y))) G Definition of Z
→ (λx.G (λy. x x y)) (λx.G (λy. x x y))

→ G (λy. (λx.G (λy. x x y)) (λx.G (λy. x x y)) y)
= (λf. λn. if n = 0 then 1 else n× (f (n− 1)))

(λy. (λx.G (λy. x x y)) (λx.G (λy. x x y)) y)
→ λn. if n = 0 then 1

else n× ((λy. (λx.G (λy. x x y)) (λx.G (λy. x x y)) y) (n− 1))
=β λn. if n = 0 then 1 else n× (λy. (Z G) y) (n− 1)
=β λn. if n = 0 then 1 else n× (Z G (n− 1))
= λn. if n = 0 then 1 else n× (FACT (n− 1))

11



Example

Let’s see Z in action, on our function G.

FACT
= Z G
= (λf. (λx. f (λy. x x y)) (λx. f (λy. x x y))) G Definition of Z
→ (λx.G (λy. x x y)) (λx.G (λy. x x y))
→ G (λy. (λx.G (λy. x x y)) (λx.G (λy. x x y)) y)

= (λf. λn. if n = 0 then 1 else n× (f (n− 1)))
(λy. (λx.G (λy. x x y)) (λx.G (λy. x x y)) y)

→ λn. if n = 0 then 1
else n× ((λy. (λx.G (λy. x x y)) (λx.G (λy. x x y)) y) (n− 1))

=β λn. if n = 0 then 1 else n× (λy. (Z G) y) (n− 1)
=β λn. if n = 0 then 1 else n× (Z G (n− 1))
= λn. if n = 0 then 1 else n× (FACT (n− 1))

11



Example

Let’s see Z in action, on our function G.

FACT
= Z G
= (λf. (λx. f (λy. x x y)) (λx. f (λy. x x y))) G Definition of Z
→ (λx.G (λy. x x y)) (λx.G (λy. x x y))
→ G (λy. (λx.G (λy. x x y)) (λx.G (λy. x x y)) y)
= (λf. λn. if n = 0 then 1 else n× (f (n− 1)))

(λy. (λx.G (λy. x x y)) (λx.G (λy. x x y)) y)

→ λn. if n = 0 then 1
else n× ((λy. (λx.G (λy. x x y)) (λx.G (λy. x x y)) y) (n− 1))

=β λn. if n = 0 then 1 else n× (λy. (Z G) y) (n− 1)
=β λn. if n = 0 then 1 else n× (Z G (n− 1))
= λn. if n = 0 then 1 else n× (FACT (n− 1))

11



Example

Let’s see Z in action, on our function G.

FACT
= Z G
= (λf. (λx. f (λy. x x y)) (λx. f (λy. x x y))) G Definition of Z
→ (λx.G (λy. x x y)) (λx.G (λy. x x y))
→ G (λy. (λx.G (λy. x x y)) (λx.G (λy. x x y)) y)
= (λf. λn. if n = 0 then 1 else n× (f (n− 1)))

(λy. (λx.G (λy. x x y)) (λx.G (λy. x x y)) y)
→ λn. if n = 0 then 1

else n× ((λy. (λx.G (λy. x x y)) (λx.G (λy. x x y)) y) (n− 1))

=β λn. if n = 0 then 1 else n× (λy. (Z G) y) (n− 1)
=β λn. if n = 0 then 1 else n× (Z G (n− 1))
= λn. if n = 0 then 1 else n× (FACT (n− 1))

11



Example

Let’s see Z in action, on our function G.

FACT
= Z G
= (λf. (λx. f (λy. x x y)) (λx. f (λy. x x y))) G Definition of Z
→ (λx.G (λy. x x y)) (λx.G (λy. x x y))
→ G (λy. (λx.G (λy. x x y)) (λx.G (λy. x x y)) y)
= (λf. λn. if n = 0 then 1 else n× (f (n− 1)))

(λy. (λx.G (λy. x x y)) (λx.G (λy. x x y)) y)
→ λn. if n = 0 then 1

else n× ((λy. (λx.G (λy. x x y)) (λx.G (λy. x x y)) y) (n− 1))
=β λn. if n = 0 then 1 else n× (λy. (Z G) y) (n− 1)

=β λn. if n = 0 then 1 else n× (Z G (n− 1))
= λn. if n = 0 then 1 else n× (FACT (n− 1))

11



Example

Let’s see Z in action, on our function G.

FACT
= Z G
= (λf. (λx. f (λy. x x y)) (λx. f (λy. x x y))) G Definition of Z
→ (λx.G (λy. x x y)) (λx.G (λy. x x y))
→ G (λy. (λx.G (λy. x x y)) (λx.G (λy. x x y)) y)
= (λf. λn. if n = 0 then 1 else n× (f (n− 1)))

(λy. (λx.G (λy. x x y)) (λx.G (λy. x x y)) y)
→ λn. if n = 0 then 1

else n× ((λy. (λx.G (λy. x x y)) (λx.G (λy. x x y)) y) (n− 1))
=β λn. if n = 0 then 1 else n× (λy. (Z G) y) (n− 1)
=β λn. if n = 0 then 1 else n× (Z G (n− 1))

= λn. if n = 0 then 1 else n× (FACT (n− 1))

11



Example

Let’s see Z in action, on our function G.

FACT
= Z G
= (λf. (λx. f (λy. x x y)) (λx. f (λy. x x y))) G Definition of Z
→ (λx.G (λy. x x y)) (λx.G (λy. x x y))
→ G (λy. (λx.G (λy. x x y)) (λx.G (λy. x x y)) y)
= (λf. λn. if n = 0 then 1 else n× (f (n− 1)))

(λy. (λx.G (λy. x x y)) (λx.G (λy. x x y)) y)
→ λn. if n = 0 then 1

else n× ((λy. (λx.G (λy. x x y)) (λx.G (λy. x x y)) y) (n− 1))
=β λn. if n = 0 then 1 else n× (λy. (Z G) y) (n− 1)
=β λn. if n = 0 then 1 else n× (Z G (n− 1))
= λn. if n = 0 then 1 else n× (FACT (n− 1))

11



Other fixed point combinators

There are many (indeed infinitely many) fixed-point
combinators. Here’s a cute one:

Yk ≜ (L L L L L L L L L L L L L L L L L L L L L L L L L L)

where

L ≜ λabcdefghijklmnopqstuvwxyzr.
(r (t h i s i s a f i x e d p o i n t c o m b i n a t o r))
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Turing’s Fixed Point Combinator

To gain somemore intuition for fixed point combinators, let’s
derive a combinatorΘ originally discovered by Turing.

We know thatΘ f is a fixed point of f, so we have

Θ f = f (Θ f).

We can write the following recursive equation:

Θ = λf. f (Θ f).

Now use the recursion removal trick:

Θ′ ≜ λt. λf. f (t t f)
Θ ≜ Θ′ Θ′
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θ Example

FACT = Θ G

= ((λt. λf. f (t t f)) (λt. λf. f (t t f))) G
→ (λf. f ((λt. λf. f (t t f)) (λt. λf. f (t t f)) f)) G
→ G ((λt. λf. f (t t f)) (λt. λf. f (t t f)) G)
= G (Θ G)
= (λf. λn. if n = 0 then 1 else n× (f (n− 1))) (Θ G)
→ λn. if n = 0 then 1 else n× ((Θ G) (n− 1))
= λn. if n = 0 then 1 else n× (FACT (n− 1))
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Definitional Translation

We know how to encode Booleans, conditionals, natural
numbers, and recursion in λ-calculus.

Can we define a real programming language by translating
everything in it into the λ-calculus?

In definitional translation, we define a denotational semantics
where the target is a simpler programming language instead of
mathematical objects.
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Review: Call-by-Value

Here are the syntax and CBV semantics of λ-calculus:

e ::= x | λx. e | e1 e2
v ::= λx. e

e1 → e′1
e1 e2 → e′1 e2

e → e′

v e → v e′

(λx. e) v → e{v/x}
β

There are two kinds of rules: congruence rules that specify
evaluation order and computation rules that specify the
“interesting” reductions.

16



Evaluation Contexts

Evaluation contexts let us separate out these two kinds of rules.

An evaluation context E is an expression with a “hole” in it: a
single occurrence of the special symbol [·] in place of a
subexpression.

E ::= [·] | E e | v E

Wewrite E[e] to mean the evaluation context Ewhere the hole
has been replaced with the expression e.
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Examples

E1 = [·] (λx. x)
E1[λy. y y] = (λy. y y) λx. x

E2 = (λz. z z) [·]
E2[λx. λy. x] = (λz. z z) (λx. λy. x)

E3 = ([·] λx. x x) ((λy. y) (λy. y))
E3[λf. λg. f g] = ((λf. λg. f g) λx. x x) ((λy. y) (λy. y))
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CBVWith Evaluation Contexts

With evaluation contexts, we can define the evaluation
semantics for the CBV λ-calculus with just two rules: one for
evaluation contexts, and one for β-reduction.

With this syntax:

E ::= [·] | E e | v E
The small-step rules are:

e → e′

E[e] → E[e′]

(λx. e) v → e{v/x}
β
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CBNWith Evaluation Contexts

We can also define the semantics of CBN λ-calculus with
evaluation contexts.

For call-by-name, the syntax for evaluation contexts is different:

E ::= [·] | E e

But the small-step rules are the same:

e → e′

E[e] → E[e′]

(λx. e) e′ → e{e′/x}
β
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Multi-Argument λ-calculus

Let’s define a version of the λ-calculus that allows functions to
take multiple arguments.

e ::= x | λx1, . . . , xn. e | e0 e1 . . . en
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Multi-Argument λ-calculus

We can define a CBV operational semantics:

E ::= [·] | v0 . . . vi−1 E ei+1 . . . en

e → e′

E[e] → E[e′]

(λx1, . . . , xn. e0) v1 . . . vn → e0{v1/x1}{v2/x2} . . . {vn/xn}
β

The evaluation contexts ensure that we evaluate
multi-argument applications e0 e1 . . . en from left to right.
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Definitional Translation

Themulti-argument λ-calculus isn’t any more expressive that
the pure λ-calculus.

We can define a translation T [[·]] that takes an expression in the
multi-argument λ-calculus and returns an equivalent expression
in the pure λ-calculus.

T [[x]] = x
T [[λx1, . . . , xn. e]] = λx1. . . . λxn. T [[e]]
T [[e0 e1 e2 . . . en]] = (. . . ((T [[e0]] T [[e1]]) T [[e2]]) . . . T [[en]])

This translation curries the multi-argument λ-calculus.
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