CS 4110

Programming Languages \& Logics

Lecture 15

De Bruijn, Combinators, Encodings

28 September 2016

Review: λ-calculus

Syntax

$$
\begin{aligned}
& e::=x\left|e_{1} e_{2}\right| \lambda x \cdot e \\
& v::=\lambda x \cdot e
\end{aligned}
$$

Semantics

$$
\begin{gathered}
\frac{e_{1} \rightarrow e_{1}^{\prime}}{e_{1} e_{2} \rightarrow e_{1}^{\prime} e_{2}} \quad \frac{e \rightarrow e^{\prime}}{v e \rightarrow v e^{\prime}} \\
\overline{(\lambda x . e) v \rightarrow e\{v / x\}} \beta
\end{gathered}
$$

Rewind: Currying

This is just a function that returns a function:

$$
\begin{gathered}
\mathrm{ADD} \triangleq \lambda x \cdot \lambda y \cdot x+y \\
\mathrm{ADD} 38 \rightarrow \lambda y \cdot 38+y \\
\text { ADD } 384=(\operatorname{ADD} 38) 4 \rightarrow 42
\end{gathered}
$$

Informally, you can think of it as a curried function that takes two arguments, one after the other.

But that's just a way to get intuition. The λ-calculus only has one-argument functions.

de Bruijn Notation

Another way to avoid the tricky issues with substitution is to use a nameless representation of terms.

$$
e::=n|\lambda . e| e e
$$

de Bruijn Notation

Another way to avoid the tricky issues with substitution is to use a nameless representation of terms.

$$
e::=n|\lambda . e| e e
$$

Abstractions have lost their variables!

Variables are replaced with numerical indices!

Examples

Here are some terms written in standard and de Bruijn notation:

Standard	de Bruijn
$\lambda x . X$	$\lambda .0$

Examples

Here are some terms written in standard and de Bruijn notation:

Standard	de Bruijn
$\lambda x . X$	$\lambda .0$
$\lambda z . z$	$\lambda .0$

Examples

Here are some terms written in standard and de Bruijn notation:

Standard	de Bruijn
$\lambda x . x$	$\lambda .0$
$\lambda z . z$	$\lambda .0$
$\lambda x . \lambda y \cdot x$	$\lambda . \lambda .1$

Examples

Here are some terms written in standard and de Bruijn notation:

Standard	de Bruijn
$\lambda x . x$	$\lambda .0$
$\lambda z . z$	$\lambda .0$
$\lambda x \cdot \lambda y \cdot x$	$\lambda . \lambda .1$
$\lambda x . \lambda y \cdot \lambda s . \lambda z . x s(y s z)$	$\lambda . \lambda . \lambda . \lambda .31\left(\begin{array}{ll}2 & 10\end{array}\right)$

Examples

Here are some terms written in standard and de Bruijn notation:

Standard	de Bruijn
$\lambda x . x$	$\lambda .0$
$\lambda z . z$	$\lambda .0$
$\lambda x \cdot \lambda y \cdot x$	$\lambda . \lambda .1$
$\lambda x . \lambda y \cdot \lambda s . \lambda z . x s(y s z z)$	$\lambda . \lambda . \lambda . \lambda .31\left(\begin{array}{ll}2 & 1 \\ 0\end{array}\right)$
$(\lambda x . x x)(\lambda x . x x)$	$(\lambda .00)(\lambda .00)$

Examples

Here are some terms written in standard and de Bruijn notation:

Standard	de Bruijn
$\lambda x . x$	$\lambda .0$
$\lambda z . z$	$\lambda .0$
$\lambda x \cdot \lambda y \cdot x$	$\lambda . \lambda .1$
$\lambda x \cdot \lambda y \cdot \lambda s . \lambda z . x s(y s z)$	$\lambda . \lambda . \lambda . \lambda .31\left(\begin{array}{ll}2 & 10) \\ (\lambda x . x x)(\lambda x . x x) & (\lambda .00)(\lambda .00) \\ (\lambda x . \lambda x \cdot x)(\lambda y . y) & (\lambda . \lambda .0)(\lambda .0) \\ \hline\end{array}\right.$

Free variables

To represent a λ-expression that contains free variables in de Bruijn notation, we need a way to map the free variables to integers.

We will work with respect to a map Γ from variables to integers called a context.

Examples:

Suppose that $\Gamma \operatorname{maps} x$ to 0 and y to 1 .

- Representation of $x y$ is 01
- Representation of $\lambda z . x y z \lambda .120$

Shifting

To define substitution, we will need an operation that shifts by i the variables above a cutoff c :

$$
\begin{aligned}
\uparrow_{c}^{i}(n) & = \begin{cases}n & \text { if } n<c \\
n+i & \text { otherwise }\end{cases} \\
\uparrow_{c}^{i}(\lambda . e) & =\lambda .\left(\uparrow_{c+1}^{i} e\right) \\
\uparrow_{c}^{i}\left(e_{1} e_{2}\right) & =\left(\uparrow_{c}^{i} e_{1}\right)\left(\uparrow_{c}^{i} e_{2}\right)
\end{aligned}
$$

The cutoff c keeps track of the variables that were bound in the original expression and so should not be shifted.

The cutoff is 0 initially.

Substitution

Now we can define substitution as follows:

$$
\begin{aligned}
n\{e / m\} & = \begin{cases}e & \text { if } n=m \\
n & \text { otherwise }\end{cases} \\
\left(\lambda . e_{1}\right)\{e / m\} & \left.\left.=\lambda . e_{1}\left\{\left(\uparrow_{0}^{1} e\right) / m+1\right\}\right)\right) \\
\left(e_{1} e_{2}\right)\{e / m\} & =\left(e_{1}\{e / m\}\right)\left(e_{1}\{e / m\}\right)
\end{aligned}
$$

Substitution

Now we can define substitution as follows:

$$
\begin{aligned}
n\{e / m\} & = \begin{cases}e & \text { if } n=m \\
n & \text { otherwise }\end{cases} \\
\left(\lambda . e_{1}\right)\{e / m\} & \left.\left.=\lambda . e_{1}\left\{\left(\uparrow_{0}^{1} e\right) / m+1\right\}\right)\right) \\
\left(e_{1} e_{2}\right)\{e / m\} & =\left(e_{1}\{e / m\}\right)\left(e_{1}\{e / m\}\right)
\end{aligned}
$$

The β rule for terms in de Bruijn notation is just:

$$
\overline{\left(\lambda . e_{1}\right) e_{2} \rightarrow \uparrow_{0}^{-1}\left(e_{1}\left\{\uparrow_{0}^{1} e_{2} / 0\right\}\right)} \beta
$$

Example

Consider the term $(\lambda u . \lambda v . u x) y$ with respect to a context where $\Gamma(x)=0$ and $\Gamma(y)=1$.

Example

Consider the term $(\lambda u \cdot \lambda v . u x) y$ with respect to a context where $\Gamma(x)=0$ and $\Gamma(y)=1$.

$$
(\lambda . \lambda .12) 1
$$

Example

Consider the term $(\lambda u \cdot \lambda v . u x) y$ with respect to a context where $\Gamma(x)=0$ and $\Gamma(y)=1$.

$$
\begin{aligned}
& (\lambda . \lambda .12) 1 \\
\rightarrow & \uparrow_{0}^{-1}\left((\lambda .12)\left\{\left(\uparrow_{0}^{1} 1\right) / 0\right\}\right)
\end{aligned}
$$

Example

Consider the term $(\lambda u \cdot \lambda v . u x) y$ with respect to a context where $\Gamma(x)=0$ and $\Gamma(y)=1$.

$$
\begin{aligned}
& (\lambda . \lambda .12) 1 \\
\rightarrow & \uparrow_{0}^{-1}\left((\lambda .12)\left\{\left(\uparrow_{0}^{1} 1\right) / 0\right\}\right) \\
= & \uparrow_{0}^{-1}((\lambda .12)\{2 / 0\})
\end{aligned}
$$

Example

Consider the term $(\lambda u . \lambda v . u x) y$ with respect to a context where $\Gamma(x)=0$ and $\Gamma(y)=1$.

$$
\begin{aligned}
& (\lambda . \lambda .12) 1 \\
\rightarrow & \uparrow_{0}^{-1}\left((\lambda .12)\left\{\left(\uparrow_{0}^{1} 1\right) / 0\right\}\right) \\
= & \uparrow_{0}^{-1}((\lambda .12)\{2 / 0\}) \\
= & \uparrow_{0}^{-1} \lambda \cdot\left((12)\left\{\left(\uparrow_{0}^{1} 2\right) /(0+1)\right\}\right)
\end{aligned}
$$

Example

Consider the term $(\lambda u . \lambda v . u x) y$ with respect to a context where $\Gamma(x)=0$ and $\Gamma(y)=1$.

$$
\begin{aligned}
& (\lambda . \lambda .12) 1 \\
\rightarrow & \uparrow_{0}^{-1}\left((\lambda .12)\left\{\left(\uparrow_{0}^{1} 1\right) / 0\right\}\right) \\
= & \uparrow_{0}^{-1}((\lambda .12)\{2 / 0\}) \\
= & \uparrow_{0}^{-1} \lambda .\left((12)\left\{\left(\uparrow_{0}^{1} 2\right) /(0+1)\right\}\right) \\
= & \uparrow_{0}^{-1} \lambda .((12)\{3 / 1\})
\end{aligned}
$$

Example

Consider the term $(\lambda u . \lambda v . u x) y$ with respect to a context where $\Gamma(x)=0$ and $\Gamma(y)=1$.

$$
\begin{aligned}
& (\lambda . \lambda .12) 1 \\
\rightarrow & \uparrow_{0}^{-1}\left((\lambda .12)\left\{\left(\uparrow_{0}^{1} 1\right) / 0\right\}\right) \\
= & \uparrow_{0}^{-1}((\lambda .12)\{2 / 0\}) \\
= & \uparrow_{0}^{-1} \lambda .\left((12)\left\{\left(\uparrow_{0}^{1} 2\right) /(0+1)\right\}\right) \\
= & \uparrow_{0}^{-1} \lambda .((12)\{3 / 1\}) \\
= & \uparrow_{0}^{-1} \lambda .(1\{3 / 1\})(2\{3 / 1\})
\end{aligned}
$$

Example

Consider the term $(\lambda u . \lambda v . u x) y$ with respect to a context where $\Gamma(x)=0$ and $\Gamma(y)=1$.

$$
\begin{aligned}
& (\lambda . \lambda .12) 1 \\
\rightarrow & \uparrow_{0}^{-1}\left((\lambda .12)\left\{\left(\uparrow_{0}^{1} 1\right) / 0\right\}\right) \\
= & \uparrow_{0}^{-1}((\lambda .12)\{2 / 0\}) \\
= & \uparrow_{0}^{-1} \lambda .\left((12)\left\{\left(\uparrow_{0}^{1} 2\right) /(0+1)\right\}\right) \\
= & \uparrow_{0}^{-1} \lambda .((12)\{3 / 1\}) \\
= & \uparrow_{0}^{-1} \lambda .(1\{3 / 1\})(2\{3 / 1\}) \\
= & \uparrow_{0}^{-1} \lambda .32
\end{aligned}
$$

Example

Consider the term $(\lambda u . \lambda v . u x) y$ with respect to a context where $\Gamma(x)=0$ and $\Gamma(y)=1$.

$$
\begin{aligned}
& (\lambda . \lambda .12) 1 \\
\rightarrow & \uparrow_{0}^{-1}\left((\lambda .12)\left\{\left(\uparrow_{0}^{1} 1\right) / 0\right\}\right) \\
= & \uparrow_{0}^{-1}((\lambda .12)\{2 / 0\}) \\
= & \uparrow_{0}^{-1} \lambda .\left((12)\left\{\left(\uparrow_{0}^{1} 2\right) /(0+1)\right\}\right) \\
= & \uparrow_{0}^{-1} \lambda .((12)\{3 / 1\}) \\
= & \uparrow_{0}^{-1} \lambda .(1\{3 / 1\})(2\{3 / 1\}) \\
= & \uparrow_{0}^{-1} \lambda .32 \\
= & \lambda .21
\end{aligned}
$$

Example

Consider the term $(\lambda u . \lambda v . u x) y$ with respect to a context where $\Gamma(x)=0$ and $\Gamma(y)=1$.

$$
\begin{aligned}
& (\lambda . \lambda .12) 1 \\
\rightarrow & \uparrow_{0}^{-1}\left((\lambda .12)\left\{\left(\uparrow_{0}^{1} 1\right) / 0\right\}\right) \\
= & \uparrow_{0}^{-1}((\lambda .12)\{2 / 0\}) \\
= & \uparrow_{0}^{-1} \lambda .\left((12)\left\{\left(\uparrow_{0}^{1} 2\right) /(0+1)\right\}\right) \\
= & \uparrow_{0}^{-1} \lambda .((12)\{3 / 1\}) \\
= & \uparrow_{0}^{-1} \lambda .(1\{3 / 1\})(2\{3 / 1\}) \\
= & \uparrow_{0}^{-1} \lambda .32 \\
= & \lambda .21
\end{aligned}
$$

which, in standard notation (with respect to Γ), is the same as $\lambda v . y x$.

Combinators

Another way to avoid the issues having to do with free and bound variable names in the λ-calculus is to work with closed expressions or combinators.

With just three combinators, we can encode the entire λ-calculus.

Combinators

Another way to avoid the issues having to do with free and bound variable names in the λ-calculus is to work with closed expressions or combinators.

With just three combinators, we can encode the entire λ-calculus.

$$
\begin{aligned}
& \mathrm{K}=\lambda x \cdot \lambda y \cdot x \\
& \mathrm{~S}=\lambda x \cdot \lambda y \cdot \lambda z \cdot x z(y z) \\
& \mathrm{I}=\lambda x \cdot x
\end{aligned}
$$

Combinators

We can even define independent evaluation rules that don't depend on the λ-calculus at all.

Behold the "SKI-calculus":

$$
\begin{aligned}
& \mathrm{K} e_{1} e_{2} \rightarrow e_{1} \\
& \mathrm{~S} e_{1} e_{2} e_{3} \rightarrow e_{1} e_{3}\left(e_{2} e_{3}\right) \\
& \operatorname{le} \rightarrow e
\end{aligned}
$$

You would never want to program in this language-it doesn't even have variables!-but it's exactly as powerful as the λ-calculus.

Bracket Abstraction

The function $[x]$ that takes a combinator term M and builds another term that behaves like $\lambda x . M$:

$$
\begin{aligned}
{[x] x } & =1 & \\
{[x] N } & =\mathrm{K} N & \text { where } x \notin f v(N) \\
{[x] N_{1} N_{2} } & =\mathrm{S}\left([x] N_{1}\right)\left([x] N_{2}\right) &
\end{aligned}
$$

The idea is that $([x] M) N \rightarrow M\{N / x\}$ for every term N.

Bracket Abstraction

We then define a function (e)* that maps a λ-calculus expression to a combinator term:

$$
\begin{aligned}
(x) * & =x \\
\left(e_{1} e_{2}\right) * & =\left(e_{1}\right) *\left(e_{2}\right) * \\
(\lambda x . e) * & =[x](e) *
\end{aligned}
$$

Example

As an example, the expression $\lambda x . \lambda y . x$ is translated as follows:

$$
\begin{aligned}
& (\lambda x \cdot \lambda y \cdot x) * \\
= & {[x](\lambda y \cdot x) * } \\
= & {[x]([y] x) } \\
= & {[x](\mathrm{K} x) } \\
= & (\mathrm{S}([x] \mathrm{K})([x] x)) \\
= & \mathrm{S}(\mathrm{~K} \mathrm{~K}) \mathrm{l}
\end{aligned}
$$

No variables in the final combinator term!

Example

We can check that this behaves the same as our original λ-expression by seeing how it evaluates when applied to arbitrary expressions e_{1} and e_{2}.

$$
\begin{aligned}
& (\lambda x \cdot \lambda y \cdot x) e_{1} e_{2} \\
= & \left(\lambda y \cdot e_{1}\right) e_{2} \\
= & e_{1}
\end{aligned}
$$

Example

We can check that this behaves the same as our original λ-expression by seeing how it evaluates when applied to arbitrary expressions e_{1} and e_{2}.

$$
\begin{aligned}
& (\lambda x \cdot \lambda y \cdot x) e_{1} e_{2} \\
= & \left(\lambda y \cdot e_{1}\right) e_{2} \\
= & e_{1}
\end{aligned}
$$

and

$$
\begin{aligned}
& (\mathrm{S}(\mathrm{KK}) \mathrm{I}) e_{1} e_{2} \\
= & \left(\mathrm{KK} e_{1}\right)\left(I e_{1}\right) e_{2} \\
= & \mathrm{K} e_{1} e_{2} \\
= & e_{1}
\end{aligned}
$$

SKI Without I

Looking back at our definitions...

$$
\begin{aligned}
& \mathrm{Ke}_{1} e_{2} \rightarrow e_{1} \\
& \mathrm{Se} e_{1} e_{2} e_{3} \rightarrow e_{1} e_{3}\left(e_{2} e_{3}\right) \\
& \mathrm{I} e \rightarrow e
\end{aligned}
$$

...l isn't strictly necessary. It equals S K K.

SKI Without I

Looking back at our definitions...

$$
\begin{aligned}
& \mathrm{Ke}_{1} e_{2} \rightarrow e_{1} \\
& \mathrm{~S} e_{1} e_{2} e_{3} \rightarrow e_{1} e_{3}\left(e_{2} e_{3}\right) \\
& \operatorname{le} \rightarrow e
\end{aligned}
$$

...l isn't strictly necessary. It equals S K K.
Our example becomes:

$$
S(K K)(S K K)
$$

Encodings

The pure λ-calculus contains only functions as values. It is not exactly easy to write large or interesting programs in the pure λ-calculus. We can however encode objects, such as booleans, and integers.

Booleans

We need to define functions TRUE, FALSE, AND, NOT, IF, and other operators that behave as follows:

AND TRUE FALSE $=$ FALSE
NOT FALSE $=$ TRUE
IF TRUE $e_{1} e_{2}=e_{1}$
IF FALSE $e_{1} e_{2}=e_{2}$

Booleans

We need to define functions TRUE, FALSE, AND, NOT, IF, and other operators that behave as follows:

$$
\begin{aligned}
\text { AND TRUE FALSE } & =\text { FALSE } \\
\text { NOT FALSE } & =\text { TRUE } \\
\text { IF TRUE } e_{1} e_{2} & =e_{1} \\
\text { IF FALSE } e_{1} e_{2} & =e_{2}
\end{aligned}
$$

Let's start by defining TRUE and FALSE:

$$
\begin{aligned}
\mathrm{TRUE} & \triangleq \lambda x \cdot \lambda y \cdot x \\
\mathrm{FALSE} & \triangleq \lambda x \cdot \lambda y \cdot y
\end{aligned}
$$

Booleans

We want the function IF to behave like
$\lambda b . \lambda t$. λf. if $b=$ TRUE then t else f.

Booleans

We want the function IF to behave like
$\lambda b . \lambda t . \lambda f$. if $b=$ TRUE then t else f.
The definitions for TRUE and FALSE make this very easy.

$$
\mathrm{IF} \triangleq \lambda b . \lambda t . \lambda f . b t f
$$

Booleans

We want the function IF to behave like

$$
\lambda b . \lambda t . \lambda f \text {. if } b=\text { TRUE then } t \text { else } f
$$

The definitions for TRUE and FALSE make this very easy.

$$
\mathrm{IF} \triangleq \lambda b . \lambda t . \lambda f . b t f
$$

We can also write the standard Boolean operators.

$$
\begin{aligned}
& \mathrm{NOT} \triangleq \lambda b \cdot b \text { FALSE TRUE } \\
& \mathrm{AND} \triangleq \lambda b_{1} \cdot \lambda b_{2} \cdot b_{1} b_{2} \text { FALSE } \\
& \mathrm{OR} \triangleq \lambda b_{1} \cdot \lambda b_{2} \cdot b_{1} \text { TRUE } b_{2}
\end{aligned}
$$

Church Numerals

Let's encode the natural numbers!
We'll write \bar{n} for the encoding of the number n. The central function we'll need is a successor operation:

$$
\operatorname{SUCC} \bar{n}=\overline{n+1}
$$

Church Numerals

Church numerals encode a number n as a function that takes f and x, and applies f to $x n$ times.

$$
\begin{aligned}
& \overline{0} \triangleq \lambda f . \lambda x \cdot x \\
& \overline{1} \triangleq \lambda f . \lambda x \cdot f x \\
& \overline{2} \triangleq \lambda f . \lambda x \cdot f(f x)
\end{aligned}
$$

Church Numerals

Church numerals encode a number n as a function that takes f and x, and applies f to $x n$ times.

$$
\begin{aligned}
& \overline{0} \triangleq \lambda f . \lambda x \cdot x \\
& \overline{1} \triangleq \lambda f . \lambda x \cdot f x \\
& \overline{2} \triangleq \lambda f . \lambda x \cdot f(f x)
\end{aligned}
$$

This makes it easy to write the successor function:

$$
\operatorname{SUCC} \triangleq \lambda n . \lambda f . \lambda x . f(n f x)
$$

Addition

Given the definition of SUCC, we can define addition. Intuitively, the natural number $n_{1}+n_{2}$ is the result of applying the successor function n_{1} times to n_{2}.

$$
\text { PLUS } \triangleq \lambda n_{1} \cdot \lambda n_{2} \cdot n_{1} \operatorname{SUCC} n_{2}
$$

