CS 4110

Programming Languages \& Logics

Lecture 14
 More λ-calculus

26 September 2016

Announcements

- Homework \#3 returned
- Out of $40, \bar{x}=35.9$ and $\sigma=8$
- Homework \#4 due Wednesday
- Preliminary Exam I next Wednesday, October 5
- Topics: Up through Hoare logic. (No λ-calculus.)
- In class; 50 minutes. (Show up on time to get all 50 minutes.)
- Closed book and closed notes.
- If the problems use any definitions (the operational semantics for IMP, the Hoare logic proof rules, etc.), those will be provided.
- Practice problems now available on CMS.

Review: λ-calculus

Syntax

$$
\begin{aligned}
& e::=x\left|e_{1} e_{2}\right| \lambda x . e \\
& v::=\lambda x . e
\end{aligned}
$$

Semantics (call by value)

$$
\begin{gathered}
\frac{e_{1} \rightarrow e_{1}^{\prime}}{e_{1} e_{2} \rightarrow e_{1}^{\prime} e_{2}} \quad \frac{e \rightarrow e^{\prime}}{v e \rightarrow v e^{\prime}} \\
\overline{(\lambda x . e) v \rightarrow e\{v / x\}} \beta
\end{gathered}
$$

Example: Twice

Consider the function defined by double $x=x+x$.

Example: Twice

Consider the function defined by double $x=x+x$. Now suppose we want to apply double multiple times:

Example: Twice

Consider the function defined by double $x=x+x$.
Now suppose we want to apply double multiple times:

$$
\text { quadruple } x=\text { double (double } x)
$$

Example: Twice

Consider the function defined by double $x=x+x$.
Now suppose we want to apply double multiple times:

$$
\begin{aligned}
\text { quadruple } x & =\text { double }(\text { double } x) \\
\text { octuple } x & =\text { quadruple (quadruple } x)
\end{aligned}
$$

Example: Twice

Consider the function defined by double $x=x+x$.
Now suppose we want to apply double multiple times:

$$
\begin{aligned}
\text { quadruple } x & =\text { double (double } x \text {) } \\
\text { octuple } x & =\text { quadruple (quadruple } x) \\
\text { hexadecatuple } x & =\text { octuple (octuple } x \text {) }
\end{aligned}
$$

Example: Twice

Consider the function defined by double $x=x+x$.
Now suppose we want to apply double multiple times:

$$
\begin{aligned}
\text { quadruple } x & =\text { double (double } x \text {) } \\
\text { octuple } x & =\text { quadruple (quadruple } x \text {) } \\
\text { hexadecatuplex } & =\text { octuple (octuple } x \text {) }
\end{aligned}
$$

We can abstract this pattern using a generic function:

$$
\text { twice } \triangleq \lambda f . \lambda x . f(f x)
$$

Example: Twice

Consider the function defined by double $x=x+x$.
Now suppose we want to apply double multiple times:

$$
\begin{aligned}
\text { quadruple } x & =\text { double (double } x) \\
\text { octuple } x & =\text { quadruple (quadruple } x) \\
\text { hexadecatuple } x & =\text { octuple (octuple } x)
\end{aligned}
$$

We can abstract this pattern using a generic function:

$$
t w i c e \triangleq \lambda f . \lambda x . f(f x)
$$

Now the functions above can be written as

$$
\begin{aligned}
\text { quadruple }= & \text { twice double } \\
\text { octuple }= & \text { twice quadruple } \\
\text { hexadecatuple }= & \text { twice octuple } \\
& (\text { or twice }(\lambda x . \text { twice } x))
\end{aligned}
$$

Evaluation

The essence of λ-calculus evaluation is the β-reduction rule, which says how to apply a function to an argument.

$$
\overline{(\lambda x . e) v \rightarrow e\{v / x\}} \beta \text {-REDUCTION }
$$

But there are many different evaluation strategies, each corresponding to particular ways of using β-reduction:

- Call-by-value
- Call-by-name
- "Full" β-reduction
- ...

Call by value

$$
\begin{gathered}
\frac{e_{1} \rightarrow e_{1}^{\prime}}{e_{1} e_{2} \rightarrow e_{1}^{\prime} e_{2}} \quad \frac{e_{2} \rightarrow e_{2}^{\prime}}{v_{1} e_{2} \rightarrow v_{1} e_{2}^{\prime}} \\
\overline{\left(\lambda x . e_{1}\right) v_{2} \rightarrow e_{1}\left\{v_{2} / x\right\}} \beta
\end{gathered}
$$

Key characteristics:

- Arguments evaluated fully before they are supplied to functions
- Evaluation goes from left to right (in this presentation)
- We don't evaluate "under a λ "

Call by name

$$
\frac{e_{1} \rightarrow e_{1}^{\prime}}{e_{1} e_{2} \rightarrow e_{1}^{\prime} e_{2}}
$$

$$
\overline{\left(\lambda x \cdot e_{1}\right) e_{2} \rightarrow e_{1}\left\{e_{2} / x\right\}} \beta
$$

Key characteristics:

- Arguments supplied immediately to functions
- Evaluation still goes from left to right (in this presentation)
- We still don't evaluate "under a λ "

Full β reduction

$$
\begin{gathered}
\frac{e_{1} \rightarrow e_{1}^{\prime}}{e_{1} e_{2} \rightarrow e_{1}^{\prime} e_{2}} \quad \frac{e_{2} \rightarrow e_{2}^{\prime}}{e_{1} e_{2} \rightarrow e_{1} e_{2}^{\prime}} \\
\frac{e \rightarrow e^{\prime}}{\lambda x \cdot e \rightarrow \lambda x \cdot e^{\prime}} \\
\frac{\left(\lambda x \cdot e_{1}\right) e_{2} \rightarrow e_{1}\left\{e_{2} / x\right\}}{} \beta
\end{gathered}
$$

Key characteristics:

- Use the β rule anywhere...
- ...including "under a λ "...
- ...nondeterministically.

Confluence

Full β reduction has this property:

Confluence

Full β reduction has this property:

Theorem (Confluence)

If $e \rightarrow^{*} e_{1}$ and $e \rightarrow^{*} e_{2}$ then $e_{1} \rightarrow^{*} e^{\prime}$ and $e_{2} \rightarrow^{*} e^{\prime}$ for some e^{\prime}.

Substitution

The main workhorse in the β rule is substitution, which replaces free occurrences of a variable x with a term e.

However, defining substitution $e_{1}\left\{e_{2} / x\right\}$ correctly is tricky...

"Substitution"

As a first attempt, consider:

$$
y\{e / x\}= \begin{cases}e & \text { if } y=x \\ y & \text { otherwise }\end{cases}
$$

"Substitution"

As a first attempt, consider:

$$
\begin{aligned}
y\{e / x\} & = \begin{cases}e & \text { if } y=x \\
y & \text { otherwise }\end{cases} \\
\left(e_{1} e_{2}\right)\{e / x\} & =\left(e_{1}\{e / x\}\right)\left(e_{2}\{e / x\}\right)
\end{aligned}
$$

"Substitution"

As a first attempt, consider:

$$
\begin{aligned}
y\{e / x\} & = \begin{cases}e & \text { if } y=x \\
y & \text { otherwise }\end{cases} \\
\left(e_{1} e_{2}\right)\{e / x\} & =\left(e_{1}\{e / x\}\right)\left(e_{2}\{e / x\}\right) \\
\left(\lambda y \cdot e_{1}\right)\{e / x\} & =\lambda y \cdot e_{1}\{e / x\}
\end{aligned}
$$

"Substitution"

As a first attempt, consider:

$$
\begin{aligned}
y\{e / x\} & = \begin{cases}e & \text { if } y=x \\
y & \text { otherwise }\end{cases} \\
\left(e_{1} e_{2}\right)\{e / x\} & =\left(e_{1}\{e / x\}\right)\left(e_{2}\{e / x\}\right) \\
\left(\lambda y \cdot e_{1}\right)\{e / x\} & =\lambda y \cdot e_{1}\{e / x\}
\end{aligned}
$$

What's wrong with this definition?

"Substitution"

As a first attempt, consider:

$$
\begin{aligned}
y\{e / x\} & = \begin{cases}e & \text { if } y=x \\
y & \text { otherwise }\end{cases} \\
\left(e_{1} e_{2}\right)\{e / x\} & =\left(e_{1}\{e / x\}\right)\left(e_{2}\{e / x\}\right) \\
\left(\lambda y \cdot e_{1}\right)\{e / x\} & =\lambda y \cdot e_{1}\{e / x\}
\end{aligned}
$$

What's wrong with this definition?
It substitutes bound variables too!

$$
(\lambda y \cdot y)\{3 / y\}
$$

"Substitution"

As a first attempt, consider:

$$
\begin{aligned}
y\{e / x\} & = \begin{cases}e & \text { if } y=x \\
y & \text { otherwise }\end{cases} \\
\left(e_{1} e_{2}\right)\{e / x\} & =\left(e_{1}\{e / x\}\right)\left(e_{2}\{e / x\}\right) \\
\left(\lambda y \cdot e_{1}\right)\{e / x\} & =\lambda y \cdot e_{1}\{e / x\}
\end{aligned}
$$

What's wrong with this definition?
It substitutes bound variables too!

$$
(\lambda y \cdot y)\{3 / y\}=(\lambda y .3)
$$

""'Substitution""

Okay... let's avoid rewriting bound variables by relying on α-equivalence. We'll require that abstractions don't use x, the variable we're substituting.

""Substitution""

Okay... let's avoid rewriting bound variables by relying on α-equivalence. We'll require that abstractions don't use x, the variable we're substituting.

$$
\begin{aligned}
y\{e / x\} & = \begin{cases}e & \text { if } y=x \\
y & \text { otherwise }\end{cases} \\
\left(e_{1} e_{2}\right)\{e / x\} & =\left(e_{1}\{e / x\}\right)\left(e_{2}\{e / x\}\right)
\end{aligned}
$$

""Substitution""

Okay... let's avoid rewriting bound variables by relying on α-equivalence. We'll require that abstractions don't use x, the variable we're substituting.

$$
\begin{aligned}
y\{e / x\} & = \begin{cases}e & \text { if } y=x \\
y \text { otherwise }\end{cases} \\
\left(e_{1} e_{2}\right)\{e / x\} & =\left(e_{1}\{e / x\}\right)\left(e_{2}\{e / x\}\right) \\
\left(\lambda y \cdot e_{1}\right)\{e / x\} & =\lambda y \cdot e_{1}\{e / x\} \quad \text { where } y \neq x
\end{aligned}
$$

We assume away abstractions over x. (Thanks, α-equivalence!)

""Substitution""

Okay... let's avoid rewriting bound variables by relying on α-equivalence. We'll require that abstractions don't use x, the variable we're substituting.

$$
\begin{aligned}
y\{e / x\} & = \begin{cases}e & \text { if } y=x \\
y & \text { otherwise }\end{cases} \\
\left(e_{1} e_{2}\right)\{e / x\} & =\left(e_{1}\{e / x\}\right)\left(e_{2}\{e / x\}\right) \\
\left(\lambda y \cdot e_{1}\right)\{e / x\} & =\lambda y \cdot e_{1}\{e / x\} \quad \text { where } y \neq x
\end{aligned}
$$

We assume away abstractions over x. (Thanks, α-equivalence!)
What's wrong with this definition?

""Substitution""

Okay... let's avoid rewriting bound variables by relying on α-equivalence. We'll require that abstractions don't use x, the variable we're substituting.

$$
\begin{aligned}
& y\{e / x\}= \begin{cases}e & \text { if } y=x \\
y & \text { otherwise }\end{cases} \\
& \left(e_{1} e_{2}\right)\{e / x\}=\left(e_{1}\{e / x\}\right)\left(e_{2}\{e / x\}\right) \\
& \left(\lambda y \cdot e_{1}\right)\{e / x\}=\lambda y \cdot e_{1}\{e / x\} \quad \text { where } y \neq x
\end{aligned}
$$

We assume away abstractions over x. (Thanks, α-equivalence!)
What's wrong with this definition?
It leads to variable capture!

$$
(\lambda y . x)\{y / x\}
$$

""Substitution""

Okay... let's avoid rewriting bound variables by relying on α-equivalence. We'll require that abstractions don't use x, the variable we're substituting.

$$
\begin{aligned}
& y\{e / x\}= \begin{cases}e & \text { if } y=x \\
y & \text { otherwise }\end{cases} \\
& \left(e_{1} e_{2}\right)\{e / x\}=\left(e_{1}\{e / x\}\right)\left(e_{2}\{e / x\}\right) \\
& \left(\lambda y \cdot e_{1}\right)\{e / x\}=\lambda y \cdot e_{1}\{e / x\} \quad \text { where } y \neq x
\end{aligned}
$$

We assume away abstractions over x. (Thanks, α-equivalence!)
What's wrong with this definition?
It leads to variable capture!

$$
(\lambda y \cdot x)\{y / x\}=(\lambda y \cdot y)
$$

Real Substitution

The correct definition is capture-avoiding substitution:

$$
\begin{aligned}
y\{e / x\} & = \begin{cases}e & \text { if } y=x \\
y & \text { otherwise }\end{cases} \\
\left(e_{1} e_{2}\right)\{e / x\} & =\left(e_{1}\{e / x\}\right)\left(e_{2}\{e / x\}\right) \\
\left(\lambda y \cdot e_{1}\right)\{e / x\} & =\lambda y \cdot\left(e_{1}\{e / x\}\right) \quad \text { where } y \neq x \text { and } y \notin f v(e)
\end{aligned}
$$

where $f v(e)$ is the free variables of a term e.

