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Announcements

e Homework #3 returned
» Outof40,x =359ando =8

e Homework #4 due Wednesday

e Preliminary Exam | next Wednesday, October 5

Topics: Up through Hoare logic. (No A-calculus.)

In class; 50 minutes. (Show up on time to get all 50 minutes.)
Closed book and closed notes.

If the problems use any definitions (the operational semantics
for IMP, the Hoare logic proof rules, etc.), those will be provided.
» Practice problems now available on CMS.
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Review: \-calculus

Syntax
e = x|eie| e

Semantics (call by value)

/ /
e, — €} e—e

e1e; — €| e ve = ve'

(M.e)v — e{v/x} 4



Example: Twice

Consider the function defined by double x = x + x.
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Example: Twice

Consider the function defined by double x = x + x.

Now suppose we want to apply double multiple times:

quadruple x = double (double x)
octuplex = quadruple (quadruple x)
hexadecatuple x = octuple (octuple x)

We can abstract this pattern using a generic function:
twice = M. \x. f(fx)

Now the functions above can be written as

quadruple = twice double
octuple = twice quadruple
hexadecatuple = twice octuple

(or twice (\x. twice x))



Evaluation

The essence of A-calculus evaluation is the S-reduction rule,
which says how to apply a function to an argument.

Ox.e)v— e{v/x} B-REDUCTION

But there are many different evaluation strategies, each
corresponding to particular ways of using S-reduction:
e Call-by-value

e Call-by-name

e “Full” g-reduction



Call by value

ey — €] e, — €

/ /
€16 —€,6 Vie, = V16

(Mx.e1) vo — er{vy/x} p

Key characteristics:

e Arguments evaluated fully before they are supplied to
functions

e Evaluation goes from left to right (in this presentation)
e We don’t evaluate “undera \”



Call by name

e, — €]
e1e; — e e

(Mx.e1) e, — er{er/x} B

Key characteristics:
e Arguments supplied immediately to functions

e Evaluation still goes from left to right (in this presentation)
e Westill don’t evaluate “undera \”



Full 2 reduction

e, — €} e, — €
e1e; — e e €16, — e €,

e—¢e
.e — . e

B
()\X el) €, — el{ez/X}
Key characteristics:
e Usethe [ rule anywhere...
e ...including “undera \”...
e ...nondeterministically.



Confluence

Full 8 reduction has this property:

e
7N
€, ()
NS

e



Confluence

Full 8 reduction has this property:

e
7N
€, ()
NS

e

Theorem (Confluence)

Ife >*e;ande —* e, thene; —* € and e, —* € forsome€'.



Substitution

The main workhorse in the (3 rule is substitution, which replaces
free occurrences of a variable x with a term e.

However, defining substitution e; {e, /x} correctly is tricky...

10



“Substitution”

As a first attempt, consider:

vt = |

e ify=x
y otherwise
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“Substitution”

As a first attempt, consider:

e/xp =

(e1e:){e/x}
(Ay-e:){e/x}

e ify=x
y otherwise

(ex{e/x}) (e2{e/x})

= \y.e;{e/x}
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“Substitution”

As a first attempt, consider:

ify =x
yie/x} )e/ ot);lerwise
(exex){e/x} = (ei{e/x}) (e2{e/x})

(\v.e ){e/x} = My.ei{e/x}

What’s wrong with this definition?
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“Substitution”

As a first attempt, consider:

ify =x
yle/xt = )e/ ot);lerwise
(exex){e/x} = (ei{e/x}) (e2{e/x})

(\v.e ){e/x} = My.ei{e/x}
What’s wrong with this definition?

It substitutes bound variables too!

Ay {3/y} = (\r.3)
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““Substitution””

Okay... let’s avoid rewriting bound variables by relying on
a-equivalence. We'll require that abstractions don’t use x, the

variable we’re substituting.
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““Substitution””

Okay... let’s avoid rewriting bound variables by relying on
a-equivalence. We'll require that abstractions don’t use x, the
variable we’re substituting.

ify =x
yle/xt = )e/ ot};erwise
(exex){e/x} = (er{e/x})(ex{e/x})
(\v.e1){e/x} = My.e{e/x} wherey # x

We assume away abstractions over x. (Thanks, a-equivalence!)
What’s wrong with this definition?

It leads to variable capture!

(A ){y/xt = (\y)



Real Substitution

The correct definition is capture-avoiding substitution:

ify =x
yle/x} = ; ot);merwise
(erex){e/x} = (e{e/x}) (e2{e/x})

(\v.e1){e/x} = My.(ei{e/x}) wherey # xand y ¢ fv(e)

where fv(e) is the free variables of a term e.

13



