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Announcements

• Homework #3 returned
▶ Out of 40, x = 35.9 and σ = 8

• Homework #4 due Wednesday

• Preliminary Exam I next Wednesday, October 5
▶ Topics: Up through Hoare logic. (No λ-calculus.)
▶ In class; 50 minutes. (Show up on time to get all 50 minutes.)
▶ Closed book and closed notes.
▶ If the problems use any definitions (the operational semantics

for IMP, the Hoare logic proof rules, etc.), those will be provided.
▶ Practice problems now available on CMS.
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Review: λ-calculus

Syntax
e ::= x | e1 e2 | λx. e
v ::= λx. e

Semantics (call by value)

e1 → e′1
e1 e2 → e′1 e2

e → e′

v e → v e′

(λx. e) v → e{v/x}
β
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Example: Twice

Consider the function defined by double x = x+ x.

Now suppose we want to apply doublemultiple times:

quadruple x = double (double x)
octuple x = quadruple (quadruple x)

hexadecatuple x = octuple (octuple x)

We can abstract this pattern using a generic function:

twice ≜ λf. λx. f (f x)

Now the functions above can be written as
quadruple = twice double

octuple = twice quadruple
hexadecatuple = twice octuple

(or twice (λx. twice x))
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Evaluation

The essence of λ-calculus evaluation is the β-reduction rule,
which says how to apply a function to an argument.

(λx. e) v → e{v/x}
β-REDUCTION

But there are many different evaluation strategies, each
corresponding to particular ways of using β-reduction:

• Call-by-value
• Call-by-name
• “Full” β-reduction
• ...
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Call by value

e1 → e′1
e1 e2 → e′1 e2

e2 → e′2
v1 e2 → v1 e′2

(λx. e1) v2 → e1{v2/x}
β

Key characteristics:
• Arguments evaluated fully before they are supplied to
functions

• Evaluation goes from left to right (in this presentation)
• We don’t evaluate “under a λ”
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Call by name

e1 → e′1
e1 e2 → e′1 e2

(λx. e1) e2 → e1{e2/x}
β

Key characteristics:
• Arguments supplied immediately to functions
• Evaluation still goes from left to right (in this presentation)
• We still don’t evaluate “under a λ”
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Full β reduction

e1 → e′1
e1 e2 → e′1 e2

e2 → e′2
e1 e2 → e1 e′2

e → e′

λx. e → λx. e′

(λx. e1) e2 → e1{e2/x}
β

Key characteristics:
• Use the β rule anywhere...
• ...including “under a λ”...
• ...nondeterministically.
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Confluence

Full β reduction has this property:

e

e1 e2

e′

Theorem (Confluence)
If e→∗ e1 and e→∗ e2 then e1 →∗ e′ and e2 →∗ e′ for some e′.
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Substitution

Themain workhorse in the β rule is substitution, which replaces
free occurrences of a variable xwith a term e.

However, defining substitution e1{e2/x} correctly is tricky...
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“Substitution”

As a first attempt, consider:

y{e/x} =

{
e if y = x
y otherwise

(e1 e2){e/x} = (e1{e/x}) (e2{e/x})

(λy.e1){e/x} = λy.e1{e/x}

What’s wrong with this definition?

It substitutes bound variables too!

(λy.y){3/y}

= (λy.3)
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““Substitution””

Okay... let’s avoid rewriting bound variables by relying on
α-equivalence. We’ll require that abstractions don’t use x, the
variable we’re substituting.

y{e/x} =

{
e if y = x
y otherwise

(e1 e2){e/x} = (e1{e/x}) (e2{e/x})

(λy.e1){e/x} = λy.e1{e/x} where y ̸= x

We assume away abstractions over x. (Thanks, α-equivalence!)

What’s wrong with this definition?

It leads to variable capture!

(λy.x){y/x}

= (λy.y)
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Real Substitution

The correct definition is capture-avoiding substitution:

y{e/x} =

{
e if y = x
y otherwise

(e1 e2){e/x} = (e1{e/x}) (e2{e/x})

(λy.e1){e/x} = λy.(e1{e/x}) where y ̸= x and y ̸∈ fv(e)

where fv(e) is the free variables of a term e.
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