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Announcements

• New TA with new office hours (welcome back, Andrew!)
▶ Monday usually; Friday this week

• Homework 2 returned
▶ Out of 36, x = 28.9, σ = 6.2, median 30
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A Recipe for Induction Over Derivations

1. Choose the relation you’re going to induct over.

2. Write down a property, P(D) = . . .

3. For every rule in the relation:

a. Write down the derivation tree rooted at that rule. Use
... to

indicate any omitted remainder of the tree.
b. Write down P(D) for this derivation tree. That’s your goal.
c. Is the goal vacuously true? If so, you’re done!
d. Does the goal have premises from the same relation? If not, this

is a base case. Reason directly.
e. If so, this is an inductive case. Apply P to those subderivations

youmarked with vertical dots. Write down the resulting
conclusion. Use that fact to prove P(D) for this derivation.
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Overview

Last time
• Hoare Logic

Today
• “Decorated” programs
• Weakest Preconditions
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Review: Hoare Logic

⊢ {P} skip {P}
SKIP

⊢ {P[a/x]} x := a {P}
ASSIGN

⊢ {P} c1 {R} ⊢ {R} c2 {Q}
⊢ {P} c1; c2 {Q}

SEQ

⊢ {P ∧ b} c1 {Q} ⊢ {P ∧ ¬b} c2 {Q}
⊢ {P} if b then c1 else c2 {Q}

IF

⊢ {P ∧ b} c {P}
⊢ {P}while b do c {P ∧ ¬b}

WHILE

|= P⇒ P′ ⊢ {P′} c {Q′} |= Q′ ⇒ Q
⊢ {P} c {Q}

CONSEQUENCE

5



Decorated Programs

Observation: Once we’ve identified loop invariants and uses of
consequence, the structure of a Hoare logic is determined!

Notation: Can write proofs by “decorating” programs with:
• A precondition ({P})
• A postcondition ({Q})
• Invariants ({I}while b do c)
• Uses of consequence {R} ⇒ {S}
• Assertions between sequences c1; {T}c2

A decorated program describes a valid Hoare logic proof if the
rest of the proof tree’s structure is implied. (Caveats: Invariants
are constrained, etc.)

6



Example: Decorated Factorial

{x = n ∧ n > 0}
y := 1;
while x > 0 do {

y := y ∗ x;
x := x− 1

}
{y = n!}
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Example: Decorated Factorial

{x = n ∧ n > 0} ⇒
{1 = 1 ∧ x = n ∧ n > 0}
y := 1;
{y = 1 ∧ x = n ∧ n > 0} ⇒
{y ∗ x! = n! ∧ x ≥ 0}
while x > 0 do {

{y ∗ x! = n! ∧ x > 0 ∧ x ≥ 0} ⇒
{y ∗ x ∗ (x− 1)! = n! ∧ (x− 1) ≥ 0}
y := y ∗ x;
{y ∗ (x− 1)! = n! ∧ (x− 1) ≥ 0}
x := x− 1
{y ∗ x! = n! ∧ x ≥ 0}

}
{y ∗ x! = n! ∧ (x ≥ 0) ∧ ¬(x > 0)} ⇒
{y = n!}
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Informal Rules for Decoration

Check whether a decorated program represents a valid proof
using local consistency checks.

For skip, the precondition and postcondition should be the
same:

{P}
skip
{P}
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Informal Rules for Decoration

For sequences, {P} c1 {R} and {R} c2 {Q}must be (recursively)
locally consistent:

{P}
c1;
{R}
c2
{Q}
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Informal Rules for Decoration

Assignment should use the substitution from the rule:

{P[a/x]}
x := a
{P}
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Informal Rules for Decoration

An if is locally consistent when both branches are locally
consistent after adding the branch condition to each:

{P}
if b then
{P ∧ b}
c1
{Q}

else
{P ∧ ¬b}
c2
{Q}

{Q}
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Informal Rules for Decoration

Decorate awhilewith the loop invariant:

{P}
while b do
{P ∧ b}
c
{P}

{P ∧ ¬b}
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Informal Rules for Decoration

To capture the CONSEQUENCE rule, you can always write a (valid)
implication:

{P} ⇒
{Q}
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Example

{

x = m ∧ y = n ∧ 0 ≤ n

}
while (0 < y) do (

x := x+ 1;
y := y− 1

)

{

x = m+ n

}
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Example

{x = m ∧ y = n ∧ 0 ≤ n}
while (0 < y) do (

x := x+ 1;
y := y− 1

)

{x = m+ n}
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Example

{x = m ∧ y = n ∧ 0 ≤ n} ⇒
{I}
while (0 < y) do (

{I ∧ 0 < y} ⇒
{I[y− 1/y][x+ 1/x]}
x := x+ 1;
{I[y− 1/y]}
y := y− 1
{I}

)
{I ∧ 0 ≮ y} ⇒
{x = m+ n}

Where I is (x = m+ n− y) ∧ 0 ≤ y.
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Example

{

true

}
while (x ̸= 0) do (

x := x− 1
)

{

x = 0

}
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Example

{true}
while (x ̸= 0) do (

x := x− 1
)

{x = 0}
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Example

{

x = n ∧ 0 ≤ n

}
y := 1
while (0 < x) do (

x := x− 1;
y := y ∗ 2

)

{

y = 2n

}
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Example

{x = n ∧ 0 ≤ n}
y := 1
while (0 < x) do (

x := x− 1;
y := y ∗ 2

)

{y = 2n}
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