

CS 4110

Programming Languages & Logics

Lecture 5
IMP Properties

7 September 2016

Announcements

• I’m here!

2

3

Announcements

Web Site
• My office hours

▶ Usually Monday 10–11am and Friday 2–3pm
▶ This week only, Thursday 1–2pm instead of Friday

• Grading details
▶ Three 24-hour slip days
▶ You can use at most two per assignment
▶ Lowest score dropped

• Slides and notes posted there from now on (instead of Piazza)
Homework #1
• Due: Today, 11:59pm
Homework #2
• Out: Today

4

Review

Last time we defined the IMP programming language...

a ::=x | n | a1 + a2 | a1 × a2

b ::=true | false | a1 < a2

c ::=skip
| x := a
| c1; c2
| if b then c1 else c2
| while b do c

5

Large-Step Semantics

Again, three relations, one for each syntactic category:

⇓Aexp ⊆ Store× Aexp× Int

⇓Bexp ⊆ Store× Bexp× Bool

⇓Com ⊆ Store× Com× Store

6

Large-Step Semantics

⟨σ, n⟩ ⇓ n

σ(x) = n

⟨σ, x⟩ ⇓ n

⟨σ, e1⟩ ⇓ n1 ⟨σ, e2⟩ ⇓ n2 n = n1 + n2
⟨σ, e1 + e2⟩ ⇓ n

⟨σ, e1⟩ ⇓ n1 ⟨σ, e2⟩ ⇓ n2 n = n1 × n2
⟨σ, e1 × e2⟩ ⇓ n

7

Large-Step Semantics

⟨σ, true⟩ ⇓ true

⟨σ, false⟩ ⇓ false

⟨σ, a1⟩ ⇓ n1 ⟨σ, a2⟩ ⇓ n2 n1 < n2
⟨σ, a1 < a2⟩ ⇓ true

⟨σ, a1⟩ ⇓ n1 ⟨σ, a2⟩ ⇓ n2 n1 ≥ n2
⟨σ, a1 < a2⟩ ⇓ false

7

Large-Step Semantics

SKIP
⟨σ, skip⟩ ⇓ σ

7

Large-Step Semantics

ASSGN
⟨σ, e⟩ ⇓ n

⟨σ, x := e⟩ ⇓ σ[x 7→ n]

7

Large-Step Semantics

SEQ
⟨σ, c1⟩ ⇓ σ′ ⟨σ′, c2⟩ ⇓ σ′′

⟨σ, c1; c2⟩ ⇓ σ′′

7

Large-Step Semantics

IF-T
⟨σ, b⟩ ⇓ true ⟨σ, c1⟩ ⇓ σ′

⟨σ, if b then c1 else c2⟩ ⇓ σ′

IF-F
⟨σ, b⟩ ⇓ false ⟨σ, c2⟩ ⇓ σ′

⟨σ, if b then c1 else c2⟩ ⇓ σ′

7

Large-Step Semantics

WHILE-F
⟨σ, b⟩ ⇓ false

⟨σ,while b do c⟩ ⇓ σ

WHILE-T
⟨σ, b⟩ ⇓ true ⟨σ, c⟩ ⇓ σ′ ⟨σ′,while b do c⟩ ⇓ σ′′

⟨σ,while b do c⟩ ⇓ σ′′

7

Command Equivalence

Intuitively, two commands are equivalent if they produce the
same result under any store...

Definition (Equivalence of commands)
Two commands c and c′ are equivalent (written c ∼ c′) if, for any
stores σ and σ′, we have

⟨σ, c⟩ ⇓ σ′ ⇐⇒ ⟨σ, c′⟩ ⇓ σ′.

8

Command Equivalence

For example, we can prove that everywhile command is
equivalent to its “unrolling”:

Theorem
For all b ∈ Bexp and c ∈ Comwe have

while b do c ∼ if b then (c;while b do c) else skip.

Proof.
We show each implication separately...

9

IMP Questions

• Q: Can you write a program that doesn’t terminate?

• A: while true do skip

• Q: Does this mean that IMP is Turing complete?
• A: Not quite... we also need to check the language is not finite
state... but IMP has real mathematical integers.

• Q: What if we replace Intwith Int64?
• A: Then we would lose Turing completeness.

• Q: Howmuch space do we need to represent configurations
during execution of an IMP program?

• A: Can calculate a fixed bound!

10

IMP Questions

• Q: Can you write a program that doesn’t terminate?

• A: while true do skip

• Q: Does this mean that IMP is Turing complete?
• A: Not quite... we also need to check the language is not finite
state... but IMP has real mathematical integers.

• Q: What if we replace Intwith Int64?
• A: Then we would lose Turing completeness.

• Q: Howmuch space do we need to represent configurations
during execution of an IMP program?

• A: Can calculate a fixed bound!

10

IMP Questions

• Q: Can you write a program that doesn’t terminate?

• A: while true do skip

• Q: Does this mean that IMP is Turing complete?

• A: Not quite... we also need to check the language is not finite
state... but IMP has real mathematical integers.

• Q: What if we replace Intwith Int64?
• A: Then we would lose Turing completeness.

• Q: Howmuch space do we need to represent configurations
during execution of an IMP program?

• A: Can calculate a fixed bound!

10

IMP Questions

• Q: Can you write a program that doesn’t terminate?

• A: while true do skip

• Q: Does this mean that IMP is Turing complete?
• A: Not quite... we also need to check the language is not finite
state... but IMP has real mathematical integers.

• Q: What if we replace Intwith Int64?
• A: Then we would lose Turing completeness.

• Q: Howmuch space do we need to represent configurations
during execution of an IMP program?

• A: Can calculate a fixed bound!

10

IMP Questions

• Q: Can you write a program that doesn’t terminate?

• A: while true do skip

• Q: Does this mean that IMP is Turing complete?
• A: Not quite... we also need to check the language is not finite
state... but IMP has real mathematical integers.

• Q: What if we replace Intwith Int64?

• A: Then we would lose Turing completeness.

• Q: Howmuch space do we need to represent configurations
during execution of an IMP program?

• A: Can calculate a fixed bound!

10

IMP Questions

• Q: Can you write a program that doesn’t terminate?

• A: while true do skip

• Q: Does this mean that IMP is Turing complete?
• A: Not quite... we also need to check the language is not finite
state... but IMP has real mathematical integers.

• Q: What if we replace Intwith Int64?
• A: Then we would lose Turing completeness.

• Q: Howmuch space do we need to represent configurations
during execution of an IMP program?

• A: Can calculate a fixed bound!

10

IMP Questions

• Q: Can you write a program that doesn’t terminate?

• A: while true do skip

• Q: Does this mean that IMP is Turing complete?
• A: Not quite... we also need to check the language is not finite
state... but IMP has real mathematical integers.

• Q: What if we replace Intwith Int64?
• A: Then we would lose Turing completeness.

• Q: Howmuch space do we need to represent configurations
during execution of an IMP program?

• A: Can calculate a fixed bound!

10

IMP Questions

• Q: Can you write a program that doesn’t terminate?

• A: while true do skip

• Q: Does this mean that IMP is Turing complete?
• A: Not quite... we also need to check the language is not finite
state... but IMP has real mathematical integers.

• Q: What if we replace Intwith Int64?
• A: Then we would lose Turing completeness.

• Q: Howmuch space do we need to represent configurations
during execution of an IMP program?

• A: Can calculate a fixed bound!

10

Determinism

Theorem
∀c ∈ Com, σ, σ′ σ′′ ∈ Store.
if ⟨σ, c⟩ ⇓ σ′ and ⟨σ, c⟩ ⇓ σ′′ then σ′ = σ′′.

Proof.
By structural induction on c...

Proof.
By induction on the derivation of ⟨σ, c⟩ ⇓ σ′...

11

Determinism

Theorem
∀c ∈ Com, σ, σ′ σ′′ ∈ Store.
if ⟨σ, c⟩ ⇓ σ′ and ⟨σ, c⟩ ⇓ σ′′ then σ′ = σ′′.

Proof.
By structural induction on c...

Proof.
By induction on the derivation of ⟨σ, c⟩ ⇓ σ′...

11

Determinism

Theorem
∀c ∈ Com, σ, σ′ σ′′ ∈ Store.
if ⟨σ, c⟩ ⇓ σ′ and ⟨σ, c⟩ ⇓ σ′′ then σ′ = σ′′.

Proof.
By structural induction on c...

Proof.
By induction on the derivation of ⟨σ, c⟩ ⇓ σ′...

11

Derivations

WriteD ⊩ y if the conclusion of derivationD is y.

Example:

Given the derivation,

⟨σ, 6⟩ ⇓ 6 ⟨σ, 7⟩ ⇓ 7

⟨σ, 6× 7⟩ ⇓ 42

⟨σ, i := 6× 7⟩ ⇓ σ[i 7→ 42]

we would write: D ⊩ ⟨σ, i := 42⟩ ⇓ σ[i 7→ 42]

12

Derivations

WriteD ⊩ y if the conclusion of derivationD is y.

Example:

Given the derivation,

⟨σ, 6⟩ ⇓ 6 ⟨σ, 7⟩ ⇓ 7

⟨σ, 6× 7⟩ ⇓ 42

⟨σ, i := 6× 7⟩ ⇓ σ[i 7→ 42]

we would write: D ⊩ ⟨σ, i := 42⟩ ⇓ σ[i 7→ 42]

12

Induction on Derivations

Given a set of axioms and inference rules, the set of derivations
is itself an inductively defined set!

This means we can prove properties by induction on derivations!

A derivationD′ is an immediate subderivation ofD ifD′ ⊩ z
where z is one of the premises used of the final rule of derivation
D.

In a proof by induction on derivations, for every axiom and
inference rule, assume that the property P holds for all
immediate subderivations, and show that it holds of the
conclusion.

13

Induction on Derivations

Given a set of axioms and inference rules, the set of derivations
is itself an inductively defined set!

This means we can prove properties by induction on derivations!

A derivationD′ is an immediate subderivation ofD ifD′ ⊩ z
where z is one of the premises used of the final rule of derivation
D.

In a proof by induction on derivations, for every axiom and
inference rule, assume that the property P holds for all
immediate subderivations, and show that it holds of the
conclusion.

13

Induction on Derivations

Given a set of axioms and inference rules, the set of derivations
is itself an inductively defined set!

This means we can prove properties by induction on derivations!

A derivationD′ is an immediate subderivation ofD ifD′ ⊩ z
where z is one of the premises used of the final rule of derivation
D.

In a proof by induction on derivations, for every axiom and
inference rule, assume that the property P holds for all
immediate subderivations, and show that it holds of the
conclusion.

13

Induction on Derivations

Given a set of axioms and inference rules, the set of derivations
is itself an inductively defined set!

This means we can prove properties by induction on derivations!

A derivationD′ is an immediate subderivation ofD ifD′ ⊩ z
where z is one of the premises used of the final rule of derivation
D.

In a proof by induction on derivations, for every axiom and
inference rule, assume that the property P holds for all
immediate subderivations, and show that it holds of the
conclusion.

13

Large-Step Semantics

SKIP
⟨σ, skip⟩ ⇓ σ

ASSGN
⟨σ, a⟩ ⇓ n

⟨σ, x := a⟩ ⇓ σ[x 7→ n]

SEQ
⟨σ, c1⟩ ⇓ σ′ ⟨σ′, c2⟩ ⇓ σ′′

⟨σ, c1; c2⟩ ⇓ σ′′

IF-T
⟨σ, b⟩ ⇓ true ⟨σ, c1⟩ ⇓ σ′

⟨σ, if b then c1 else c2⟩ ⇓ σ′

IF-F
⟨σ, b⟩ ⇓ false ⟨σ, c2⟩ ⇓ σ′

⟨σ, if b then c1 else c2⟩ ⇓ σ′

WHILE-T
⟨σ, b⟩ ⇓ true ⟨σ, c⟩ ⇓ σ′ ⟨σ′,while b do c⟩ ⇓ σ′′

⟨σ,while b do c⟩ ⇓ σ′′

WHILE-F
⟨σ, b⟩ ⇓ false

⟨σ,while b do c⟩ ⇓ σ

14

