CS4110

Programming Languages & Logics

Lecture 2
Introduction to Semantics

26 August 2016

29-August 2012

Dexter
Cross-Out

Dexter
Typewritten Text
26 August 2016

Dexter
Typewritten Text

Announcements

Wednesdayteetgre
o Mevedtohursten-103

Kozen
Foster Office Hours

o Today Ha-t2pminGates432 10-llam Gates 436
Heta-OtheeHowrs

o WedlamerrED

o thurs230pr-4prmintBD

Homework #1

e Out: Wednesday, September3rd August 31
* Due: Wednesday, September +8th Sept 7
e Distributed viaCMS ~ <- most likely

Dexter
Typewritten Text

Dexter
Cross-Out

Dexter
Cross-Out

Dexter
Cross-Out

Dexter
Cross-Out

Dexter
Cross-Out

Dexter
Cross-Out

Dexter
Cross-Out

Dexter
Cross-Out

Dexter
Cross-Out

Dexter
Cross-Out

Dexter
Typewritten Text
August 31

Dexter
Typewritten Text
Sept 7

Dexter
Typewritten Text
<- most likely

Dexter
Cross-Out

Dexter
Typewritten Text
Kozen

Dexter
Typewritten Text
10-11am Gates 436

Semantics

Question: What is the meaning of a program?

w

Semantics

Question: What is the meaning of a program?

Answer: We could execute the program using an interpreter or a

compiler, or we could consult a manual...

® O O 73 nate — bash — 37x9 ™

AB.T Void

The dnonexistent) value of a void object may not be used in any way, and neither
upllcll nor implicit conversion to any non-void type may be applied. Because a void
denotes & i value, such an ion may be used only where the
wllue is not required, for example as an expression statement (§A9.2) or as the left

operand of a comma aperator (§A7.18).
An expression may be converted to type void by a cast. For example, a void cast
documents the discarding of the value of a function call used as an expression statement.
void did not appear in the first edition of this book, but has become common

since.

..but none of these is a satisfactory solution.

Formal Semantics

Three Approaches

e Operational (o,8) — (0, €)
» Model program by execution on abstract machine
» Useful forimplementing compilers and interpreters

e Denotational: [el

» Model program as mathematical objects
» Useful for theoretical foundations

e Axiomatic F{p}e{v}
» Model program by the logical formulas it obeys
» Useful for proving program correctness

Arithmetic Expressions

Syntax

A language of integer arithmetic expressions with assignment.

Syntax

A language of integer arithmetic expressions with assignment.

Metavariables:
x,v,z € Var

n,m € Int
e € Exp

Syntax

A language of integer arithmetic expressions with assignment.

Metavariables:
x,v,z € Var

n,m € Int
e € Exp

BNF Grammar:
e.. =X

|€1+€2
| e * e
|x:=ey; e

Ambiguity

What expression does the string “1 + 2 x 3" describe?

~

Ambiguity

What expression does the string “1 + 2 x 3" describe?

There are two possible parse trees:

1/\ /N
/N /N
2 3 1 2

3

Ambiguity

What expression does the string “1 + 2 x 3" describe?

There are two possible parse trees:

+ *
/N / N\
1 * + 3
/ N\ / N\
2 3 1 2
In this course, we will distinguish abstract syntax from concrete

syntax, and focus primarily on abstract syntax (using conventions
or parentheses at the concrete level to disambiguate as needed).

Representing Expressions

BNF Grammar:
en=x

ler+e
|€1*€2
|x:=ey; e

Representing Expressions

BNF Grammar:
en=x
| n
lei+e
| e * e
|x:=ey; e

OCaml:

type exp = Var of string
| Intofint
| Add of exp * exp
| Mul of exp * exp
| Assgn of string * exp * exp

Example: Mul(Int 2, Add(Var "fod’, Int 1))

Representing Expressions

BNF Grammar:
e..=X
| n
| e +e
| e xe,
|x:=e; e

Java:

abstract class Expr{}

class Var extends Expr { String name; ... }

class Int extends Expr {int val; ... }

class Add extends Expr { Expr exp1, exp2; ... }

class Mul extends Expr { Expr exp1, exp2; ... }

class Assgn extends Expr { String var, Expr exp1, exp2; ... }

Example: new Mul(new Int(2), new Add(new Var("foo”), new Int(1)))

Quiz

e 7+(4%2)evaluatesto..?

Quiz

e 7+ (4%2)evaluatesto 15

Quiz

e 7+ (4x2)evaluatesto 15
e j:=6+1:2x*3%*jevaluatesto..?

Quiz

e 7+ (4x2)evaluatesto 15
e j:=6+1:2x*3%*jevaluatesto42

Quiz

e 7+ (4x2)evaluatesto 15
e j:=6+1:2x*3%*jevaluatesto42
e x+1evaluatesto..?

Quiz

e 7+ (4x2)evaluatesto 15
e j:=6+1:2x*3%*jevaluatesto42
e x+ 1 evaluates to error?

Quiz

e 7+ (4x2)evaluatesto 15
e j:=6+1:2x*3%*jevaluatesto42
e x+ 1 evaluates to error?

The rest of this lecture will make these intuitions precise...

Mathematical Preliminaries

Binary Relations

The product of two sets A and B, written A x B, contains all ordered
pairs (a,b) witha € Aand b € B.

Binary Relations

The product of two sets A and B, written A x B, contains all ordered
pairs (a,b) witha € Aand b € B.

A binary relation on A and Bis just a subset R C A x B.

Binary Relations

The product of two sets A and B, written A x B, contains all ordered
pairs (a,b) witha € Aand b € B.

A binary relation on A and Bis just a subset R C A x B.

Given a binary relation R C A x B, the set A is called the domain of
R and B is called the range (or codomain) of R.

Binary Relations

The product of two sets A and B, written A x B, contains all ordered
pairs (a,b) witha € Aand b € B.

A binary relation on A and Bis just a subset R C A x B.

Given a binary relation R C A x B, the set A is called the domain of
R and B is called the range (or codomain) of R.

Some Important Relations

e empty -0

e total-A x B

e identityon A-{(a,a) | a € A}.

e composition R; S—{(a,c)|3b.(a,b) € RA (b,c) € S}

Functions

A (total) function fis a binary relation f C A x B with the property
thatevery a € Ais related to exactlyone b € B

Functions

A (total) function fis a binary relation f C A x B with the property
thatevery a € Ais related to exactlyone b € B

When fis a function, we usually write f : A — Binstead of f C A x B

Functions

A (total) function fis a binary relation f C A x B with the property
thatevery a € Ais related to exactlyone b € B

When fis a function, we usually write f : A — Binstead of f C A x B

The domain and range of f are defined the same way as for relations

Z

Functions

A (total) function fis a binary relation f C A x B with the property
thatevery a € Ais related to exactlyone b € B

When fis a function, we usually write f : A — Binstead of f C A x B
The domain and range of f are defined the same way as for relations

The image of fis the set of elements b € B that are mapped to by at
least one a € A. More formally: image(f) = {f(a) | a € A}

Z

Some Important Functions

Given two functionsf: A — Band g : B — C, the composition of f
and g is defined by: (g o f)(x) = g(f(x)) Note order!

Some Important Functions

Given two functionsf: A — Band g : B — C, the composition of f
and g is defined by: (g o f)(x) = g(f(x)) Note order!

A partial function f : A — Bis a total function f : A” — Bon a set
A" C A. The notation dom () refers to A",

Some Important Functions

Given two functionsf: A — Band g : B — C, the composition of f
and g is defined by: (g o f)(x) = g(f(x)) Note order!

A partial function f : A — Bis a total function f : A” — Bon a set
A" C A. The notation dom () refers to A",

A function f: A — Bis said to be injective (or one-to-one) if and only
if ay # a, implies f(ay) # f(a,).

Some Important Functions

Given two functionsf: A — Band g : B — C, the composition of f
and g is defined by: (g o f)(x) = g(f(x)) Note order!

A partial function f : A — Bis a total function f : A” — Bon a set
A" C A. The notation dom () refers to A",

A function f: A — Bis said to be injective (or one-to-one) if and only
if ay # a, implies f(ay) # f(a,).

A function f: A — Bis said to be surjective (or onto) if and only if
the image of fis B.

Operational Semantics

Overview

An operational semantics describes how a program executes on
some (typically idealized) abstract machine.

Overview

An operational semantics describes how a program executes on
some (typically idealized) abstract machine.

A small-step semantics describes how such an execution proceeds
in terms of successive reductions: (o,e) — (o, €’}

Overview

An operational semantics describes how a program executes on
some (typically idealized) abstract machine.

A small-step semantics describes how such an execution proceeds
in terms of successive reductions: (o,e) — (o, €’}

For our language, a configuration (e, e) has two components:
e astore o that records the values of variables
e and the expression e being evaluated

Overview

An operational semantics describes how a program executes on
some (typically idealized) abstract machine.

A small-step semantics describes how such an execution proceeds
in terms of successive reductions: (o,e) — (o, €’}

For our language, a configuration (e, e) has two components:
e astore o that records the values of variables
e and the expression e being evaluated

More formally,
Var — Int
Store x Exp

Store
Config

A
A

Note that a store is a partial function from variables to integers.

Operational Semantics

The small-step operational semantics itself is a relation on
configurations—i.e., a subset of Config x Config.

Operational Semantics

The small-step operational semantics itself is a relation on
configurations—i.e., a subset of Config x Config.

Notation: (g,e) — (o', €)

Operational Semantics

The small-step operational semantics itself is a relation on
configurations—i.e., a subset of Config x Config.

Notation: (g,e) — (o', €)

Question: How should we define this relation?

Operational Semantics

The small-step operational semantics itself is a relation on
configurations—i.e., a subset of Config x Config.

Notation: (g,e) — (o', €)

Question: How should we define this relation? Note that there are
an infinite number of configurations and possible steps!

Operational Semantics

The small-step operational semantics itself is a relation on
configurations—i.e., a subset of Config x Config.

Notation: (o,e) — (o', €’)

Question: How should we define this relation? Note that there are
an infinite number of configurations and possible steps!

Answer: define it inductively, using inference rules:

p=m-+n
<O',ﬂ+m> — <07p>

Add

Operational Semantics

The small-step operational semantics itself is a relation on
configurations—i.e., a subset of Config x Config.

Notation: (o,e) — (o', €’)

Question: How should we define this relation? Note that there are
an infinite number of configurations and possible steps!

Answer: define it inductively, using inference rules:

p=m+n

Add
<U7 n+ m> — <Jv p)

Intuitively, if facts above the line hold, then facts below the line
hold. More formally, “—" is the smallest relation “closed” under
the inference rules.

Variables

Addition

(0,6)) — (d’,€})

(0,e1+e)) — (o', €1+ &)

LAdd

Addition

(0,6)) — (d’,€})

(0,e1+e)) — (o', €1+ &)

<07 e2> — <U,7e/2>
<0-7 ﬂ+€2> — <0J7 I’)+€/2>

LAdd

RAdd

Addition

o,e) — (0, ¢
o) > 0d)

(0,e1+e)) — (o', €1+ &)

<07 €2> — <U,7e/2>
<0-7 ﬂ+€2> — <0J> I’)+€/2>

RAdd

p=m+n

Add
<07n+m> — <0ap>

Multiplication

(o,e1) — (0’ €))

(0,€1%e5) —> (o', €1 %))

LMul

19

Multiplication

(o,e1) — (0’ €))

(0,€1%e5) —> (o', €1 %))

(0,82) — (0", €))
<Uv n* €2> — <OJ7 n* €/2>

LMul

19

Multiplication

(o,e1) — (0’ €))

LMul
(0,€1%e5) —> (o', €1 %))
(0,,) — (d',€))

RMul
<U> n* €2> — <0J7 n* €/2>

=mxn
P Mul

{o0;m*n) — (o,p)

19

Assignment

20

Assignment

Assgn

o' =ox—n]

Assgn
(o,x:=n; e)) — (0, &) ?

Notation: o[x +— n] maps x to n and otherwise behaves like &

20

Operational Semantics

n=ol) o) (0he)
— " Var
(o,x) = (o, n) (o,e1+e) — (0 €] +e))
<0’,€2>—><0'/7612> RAdd p=m+n
e R ANY Add
) 2>—><O',I’7+€2> <J,n+m>—><a,p>
<Ua 6’]) — <0Ja62> LMul <Ua €2> — <OJ7€,2> RMuI
o,e1 %)) = (0, € xey o,nxey) = (o', nxé
1 2
=mxn ce1) = (ol e
P Mul k) <U,) ; Assgn’
(o,mx*n) — (o,p) (o,x:=e1; €) — (0',x:=€]; e)
o' =olxn)
Assgn

(o,x:=n; e;) — {0, &)

