CS4110

Programming Languages & Logics

Lecture 25
Records and Subtyping

31 October 2016

Announcements

e Homework 6 returned: x = 34 of 37,0 = 3.8

e Preliminary Exam Il in class on Wednesday, November 16
» New date! Please email me as soon as you can if you have a
conflict.
» Topics: A-calculus through subtyping (today)
» Not cumulative (unlike the final)
» Practice problems available on CMS now

Records

We’ve seen binary products (pairs), and they generalize to n-ary
products (tuples).

Records are a generalization of tuples where we mark each field
with a label.

Records

We’ve seen binary products (pairs), and they generalize to n-ary
products (tuples).

Records are a generalization of tuples where we mark each field
with a label.

Example:
{foo = 32, bar = true}

is a record value with an integer field foo and a boolean field bar.

w

Records

We’ve seen binary products (pairs), and they generalize to n-ary
products (tuples).

Records are a generalization of tuples where we mark each field
with a label.

Example:
{foo = 32, bar = true}
is a record value with an integer field foo and a boolean field bar.

Its type is:
{foo:int, bar:bool}

Syntax

le L
ex=--|{h=ey....[,=ey}|el
vi=- [{lh=vy,.... [, =v,}

To=- | {liim, .. T}

Dynamic Semantics

E.=..
’ {[1 = Vl,...,[,'_l = V,'_l,[,' = E>[i+1 = e,-+1,...,[,, = e,,}
El

{L=vy,....L,=vy}.li = v

i b =S lewg = 7]

Static Semantics

Viel.n TrFe:T
FrE{h=ey,....LL=e}:{li:m,.... l,:7h}

Fee{liim,. ... b1}
rl—e.l,'ZT,'

Example

GETX £ \p:{x :int,y : int}. p.x

C €ty bx= S, t]_7%
—X <

Example

GETX £ \p:{x :int,y : int}. p.x

GETX {x =4,y =2}

Example

GETX £ \p:{x :int,y : int}. p.x
GETX {x =4,y =2}

GETX {x =4,y =2,z =42}

—t L

Example

GETX £ \p:{x :int,y : int}. p.x
GETX {x =4,y =2}
GETX {x =4,y =2,z =42}

GETX {y =2,x =4}

Subtyping

Definition (Subtype)

71 1S @ subtype of 1, writte @ if a program can use a value
of type 71 whenever it wouldrusea value of type 7.

If 7 < 75, we also say 7; is the supertype of ;.

Subtyping

Definition (Subtype)

71 i @ subtype of 1, written 71 < 7y, if a program can use a value
of type 71 whenever it would use a value of type 7,.

If 7 < 75, we also say 7; is the supertype of ;.

Fr-er 7<7

e . SUBSUMPTION
e:r

This typing rule says that if e has type 7 and 7 is a subtype of 7/,
then e also has type 7.

Record Subtyping

We’ll define a new subtyping relation that works together with
the subsumption rule.

1SN

Record Subtyping

This program isn’t well-typed (yet):

(Ap:{x:int}.p.x) {x =4,y =2}

10

Record Subtyping

This program isn’t well-typed (yet):
(Ap:{x:int}.p.x) {x =4,y =2}

So let’s add width subtyping:

k>0

{11:7_17”'7[n+k:7—n+k} S {[1:7']_,...,[”:7'”}

{ v, qointd = fs daed

T“ N P LI S TR T

SuUR.

10

Record Subtyping

This program also doesn’t get stuck:

(Ap:{x:int,y :int}.p.x+p.y) {y =37,x =5}

11

Record Subtyping

This program also doesn’t get stuck:

(Ap:{x:int,y :int}.p.x+p.y) {y =37,x =5}

So we can make it well-typed by adding permutation subtyping:

mis a permutationon 1..n
{[137'1,.. [, Tn} < {[Tr 1),...,[7r(,,)27'7r(,,)}

2 w ~aad) g):;t\&%

IN

N
%

§/> K

11

Record Subtyping

Does this program get stuck? Is it well-typed?

(Ap:{x:{y:int}}.pxy) {x ={y =4,z=2}}

12

Record Subtyping

Does this program get stuck? Is it well-typed?
(Ap:{x:{y:int}}.pxy) {x ={y =4,z=2}}

Let’s add depth subtyping:

Viel.un 7<7
{[1:7—17...7[”:7—”} S {[1:7—1'7...,[”:7—”,}

fy"— %KZS?Z

12

Record Subtyping

Putting all three forms of record subtyping together:

Viel.n.3jelm L= AN 5<7

S-RECORD
{hem, .ol < {li7y, . 0T}

13

Standard Subtyping Rules

We always make the subtyping relation both reflexive and
transitive.

n<n <73
S-REFL S-TRANS
T<T 71 <T3

Think of every type describing a set of values. Then 7, < 7,
when 7;’s values are a subset of 7’s.

14

Top Type

It’s sometimes useful to define a maximal type with respect to
subtyping:

Tu=--| T

S-Top

T<T

Everything is a subtype of T, asin Java’s Object or Go’s
interface{}.

Subtype All the Things!

We can also write subtyping rules for sums and products:

n<m n<mn

; ~ S-Sum
T1 +7’2 S 1 +7’2

16

Subtype All the Things!

We can also write subtyping rules for sums and products:

n<t nmn<mn
S-Probuct

/ /
TIXT <7 XT,

16

Function Types

How should we decide whether one function type is a subtype of
another?

/
T T <T —T

17

Desiderata

We’d like to have:

int — {x:int,y:int} <int — {x:int}

(X s) «
%

18

Desiderata

We’d like to have:
int — {x:int,y:int} <int — {x:int}
And:

{x:int} — int < {x:int,y:int} — int

toap T opox
g %xtg,‘\)"_&

18

Desiderata

We’d like to have:

int — {x:int,y:int} <int — {x:int}
And:

{x:int} — int < {x:int,y:int} — int

In general, to prove:
7T T

we’ll require:
e Argument types are contravariant: 7{ < 7y
e Return types are covariant: 7, < 75

18

Function Subtyping

Putting these two pieces together, we get the subtyping rule for
function types:

! /
1<t <7

; ; S-FUNCTION
1T <T —T

19

Reference Subtyping

What should the relationship be between 7 and 7’ in order to
have 7 ref < 7' ref?

ref S -t ref

T < v
' Tt

<

20

Example

If ' has type 7’ ref, then !r’ has type 7'.

Imagine we replace r’ with r, where r has a type 7 ref that we’ve
somehow decided is a subtype of 7’ ref.

21

Example

If ' has type 7’ ref, then !r’ has type 7'.

Imagine we replace r’ with r, where r has a type 7 ref that we’ve
somehow decided is a subtype of 7’ ref.

Then !rshould still produce something can be treated asa 7'. In
other words, it should have a type that is a subtype of 7'.

So the referent type should be covariant:

/
T<T

7 ref < 7’ ref

Example

If v has type 7/, then r' := v should be legal.

If we replace r with r, then it must still be legal to assign r := v.
So !rwould then produce a value of type 7.

Ty

22

Example

If v has type 7/, then r' := v should be legal.

If we replace r with r, then it must still be legal to assign r := v.
So !rwould then produce a value of type 7.

So the referent type should be contravariant!

<
7 ref < 7’ ref

22

Reference Subtyping

In fact, subtyping for reference types must be invariant: a
reference type 7 refis a subtype of 7’ ref if and only if 7 < 7" and
T <.

r<7 <7
S-REF

7 ref < 7' ref

Java Arrays

Tragically, Java’s mutable arrays use covariant subtyping!

24

Java Arrays

Tragically, Java’s mutable arrays use covariant subtyping!
Suppose that Cow is a subtype of Animal.
Code that only reads from arrays typechecks:

Animal[] arr = new Cow|] { new Cow(“Alfonso”) };
Animala = arr[0];

24

Java Arrays

Tragically, Java’s mutable arrays use covariant subtyping!
Suppose that Cow is a subtype of Animal.
Code that only reads from arrays typechecks:

Animal[] arr = new Cow[] { new Cow(“Alfonso”) };
Animala = arr[0];

but writing to the array can get into trouble:
arr[0] = new Animal(“Brunhilda”);

Specifically, this generates an ArrayStoreException.

