CS4110

Programming Languages & Logics

Lecture 15
De Bruijn, Combinators, Encodings

28 September 2016

Review: \-calculus

Syntax
e = x|eie| e
v = \.e
Semantics
e, — €] e—¢e
e1e; — € e ve — ve

(M.e)v— e{v/x} 4

Rewind: Currying

This is just a function that returns a function:

ADD £ M. \y.x +y
ADD 38 — \y.38 +y

ADD 38 4 = (ADD 38) 4 —#42

Informally, you can think of it as a curried function that takes
two arguments, one after the other.

But that’s just a way to get intuition. The A-calculus only has
one-argument functions.

de Bruijn Notation

Another way to avoid the tricky issues with substitution is to use
a nameless representation of terms.

ex=n|lelee

de Bruijn Notation

Another way to avoid the tricky issues with substitution is to use
a nameless representation of terms.

ex=n|lelee

Abstractions have lost their variables!

Variables are replaced with numerical indices!

Examples

Here are some terms written in standard and de Bruijn notation:

| Standard | de Bruijn |
XX A0

(6]

Examples

Here are some terms written in standard and de Bruijn notation:

| Standard | de Bruijn |

AX.X 2.0
NZ.Z 2.0

(6]

Examples

Here are some terms written in standard and de Bruijn notation:

| Standard | de Bruijn |
AX.X A.0
A2z A0

AXY.X A1

(6]

Examples

Here are some terms written in standard and de Bruijn notation:

| Standard | de Bruijn |
AX.X A.0
A2z A0
AXY.X A1

MAYASAZXS(Ysz) | AAAAN31(210)

(6]

Examples

Here are some terms written in standard and de Bruijn notation:

| Standard | de Bruijn |
AX.X A.0
A2z A0
AXY.X A1

MAYASAZXS(Ysz) | AAAAN31(210)
(Mxx) (Ax.x x) (A.00) (A.00)

(6]

Examples

Here are some terms written in standard and de Bruijn notation:

| Standard | de Bruijn |
AX.X .0
A\z2.z .0
AXY.X A1
MAYASAZXS(Ysz) | AAAAN31(210)
(Mxx) (Ax.x x) (A.00) (A.00)
(M Axx) (Ay.y) (A.X.0) (A.0)

(6]

Free variables

To represent a A\-expression that contains free variables in de
Bruijn notation, we need a way to map the free variables to
integers.

We will work with respect to a map I from variables to integers
called a context.

Examples:

Suppose that ' maps xto 0 and y to 1.

e Representation of xyis01
e Representation of A\z. x y z-\. 120

- \
”\\\%m S oA ¥

Shifting

To define substitution, we will need an operation that shifts by i
the variables above a cutoff c:

100 = {0y oo

n +I otherW|se
Tlc ()“e) -)‘ c+1
Tt (e1e;) = (10 e1) (T' €,)

The cutoff ¢ keeps track of the variables that were bound in the
original expression and so should not be shifted.

The cutoff is 0 initially.

Substitution

Now we can define substitution as follows:

e ifn=m

n{e/m} - n otherwise
(he){e/m} = Meu{(1} e)/m+1}))>
(erex){e/m} = (er{e/m})(e:{e/m}

Substitution

Now we can define substitution as follows:

ifn =
n{e/m} - i otI:\ervc:se

(he){e/m} = Ne{(fs €)/m +1}))

(ere2){e/m} = (er{e/m})(ex{e/m})

The (3 rule for terms in de Bruijn notation is just:

Cele > 1o (@l e)o))

Example

Consider the term (Au.Av.u x) y with respect to a context where
(x)=0andl(y) = 1.

Example

Consider the term (Au.Av.u x) y with respect to a context where
(x)=0andl(y) = 1.

(AX12)1

Example

Consider the term (Au.Av.u x) y with respect to a context where
(x)=0andl(y) = 1.

(AX12)1
= 1o (A12){(151)/0})

Example

Consider the term (Au.Av.u x) y with respect to a context where
M(x)=0andTl(y) =

(\112)1
= Too (A12){(151)/0})
= To ((A-12){2/0})

o (

Example

Consider the term (Au.Av.u x) y with respect to a context where
M(x)=0andTl(y) =

2){(1)/0})
2){2/0})
M((12){(152)/(0 +1)})

Example

Consider the term (Au.Av.u x) y with respect to a context where
M(x)=0andTl(y) =

(AA12)1
— To ((A.12){(15 1)/0})
= ((A 1 2){2/0})
= To AM(12){(152)/(0+1)})
— Rt A((12){3/1})

Example

Consider the term (Au.Av.u x) y with respect to a context where
M(x)=0andTl(y) =

(AAla

o (A12){(t5

)H{(1o 1)/0})
((A 1 2){2/0})
A((12){(15 2)

/(0+1)})
A(12){3/1))
T’l A(1{3/1}) (2{3/1})

4

Example

Consider the term (Au.Av.u x) y with respect to a context where
M(x)=0andTl(y) =

(AAla

o (A12){(151)/0})

((A 1 2){2/0})
A((12){(152)/(0+1)})

A(12){3/1))

T*l A.(1{3/1}) (2{3/1})
1ot A32

w4

Example

Consider the term (Au.Av.u x) y with respect to a context where
M(x)=0andTl(y) =

(AAla

o (A12){(15 1)/0})
((A 1 2){2/0})
A((12){(152)/(0+1)})
((12){3/1})
T*l A(1{3/1}) (2{3/1})
1ot A32
A21

o

Example

Consider the term (Au.Av.u x) y with respect to a context where
M(x)=0andTl(y) =

(AAla

o (A12){(15 1)/0})
((A 1 2){2/0})
A((12){(152)/(0+1)})
((12){3/1})
*1 A-(1{3/1}) (2{3/1})
1ot A32
A21

o

which, in standard notation (with respect to I'), is the same as
AV.Y X.

Combinators

Another way to avoid the issues having to do with free and
bound variable names in the A-calculus is to work with closed
expressions or combinators.

With just three combinators, we can encode the entire
A-calculus.

10

Combinators

Another way to avoid the issues having to do with free and
bound variable names in the A-calculus is to work with closed
expressions or combinators.

With just three combinators, we can encode the entire
A-calculus.

K= MA\y. x
S =M.z xz(y2)
| = M. x

Combinators

We can even define independent evaluation rules that don’t
depend on the A-calculus at all.

Behold the “SKl-calculus”:

Ke,e, — e;
Sejee3 — e e;(ere3)
le —» e

You would never want to program in this language—it doesn’t
even have variables!—but it’s exactly as powerful as the
A-calculus.

Bracket Abstraction

The function [x] that takes a combinator term M and builds
another term that behaves like A\x.M:

X]x =1
X]N = KN where x & fv(N)
AN N2 = S([x] V1) (X N2)

The ideais that ([x] M) N — M{N/x} for every term N.

12

Bracket Abstraction

We then define a function (e)* that maps a A-calculus
expression to a combinator term:

(x)x = x

(e1e)x = (e1)* (ex)x
(Mx.e)x = [x](e)x

13

Example

As an example, the expression \x.\y. x is translated as follows:

(AX Y. X)*
= [X] (\y. x)*
= (WX
= [X(Kx)
= (S(XK) (X]x))
= S(KK)I

No variables in the final combinator term!

14

Example

We can check that this behaves the same as our original
A-expression by seeing how it evaluates when applied to
arbitrary expressions e; and e,.

(MY x) er e;
= (. e1) &
-7 €,

Example

We can check that this behaves the same as our original
A-expression by seeing how it evaluates when applied to
arbitrary expressions e; and e,.

(MY x) er e;
— (\y.e1) e

- €3

and
(S(KK)) e, e,

I
—(KKey) (lep) e,
~Ke; e,
-%el

SKI Without |

Looking back at our definitions...

Ke;je, = e
Se;e,e3 — e1e3(e;e3)
le — e

...l isn’t strictly necessary. It equals S K K.

16

SKI Without |

Looking back at our definitions...
Keie, — e;

Se;e,e3 — e1e3(e;e3)
le — e

...l isn’t strictly necessary. It equals S K K.

Our example becomes:

S (KK) (SKK)

16

Encodings

The pure A-calculus contains only functions as values. It is not
exactly easy to write large or interesting programs in the pure
A-calculus. We can however encode objects, such as booleans,
and integers.

17

Booleans

We need to define functions TRUE, FALSE, AND, NOT, IF, and
other operators that behave as follows:

AND TRUE FALSE - FALSE
NOT FALSE —¥ TRUE
IFTRUEe; e, €;
IF FALSE e; e, €,

18

Booleans

We need to define functions TRUE, FALSE, AND, NOT, IF, and
other operators that behave as follows:

AND TRUE FALSE ~* FALSE
NOT FALSE - TRUE
IFTRUE e; €; ~* €
IF FALSE e; e, ~* e,

Let’s start by defining TRUE and FALSE:

TRUE £ \x. \y. x
FALSE £)\x. \y.y

18

Booleans

We want the function IF to behave like

Ab. \t. M. if b = TRUE then telsef.

19

Booleans

We want the function IF to behave like
Ab. At. M. if b = TRUE then telse f.
The definitions for TRUE and FALSE make this very easy.

IF2 M. AN btS

19

Booleans

We want the function IF to behave like
Ab. At. Mf.if b = TRUE then telse f.
The definitions for TRUE and FALSE make this very easy.
IF 2 \b. At A.btF
We can also write the standard Boolean operators.

NOT £ \b. b FALSE TRUE
AND £ \b;. \b,. by b, FALSE
OR £ \b;. \b,. b; TRUE b,

19

Church Numerals

Let’s encode the natural numbers!

We’ll write n for the encoding of the number n. The central
function we’ll need is a successor operation:

SUCCn=n+1

20

Church Numerals

Church numerals encode a number n as a function that takes f
and x, and applies fto x n times.

0 £ MM.x
1 2 M fx
2 & M f(fx)

21

Church Numerals

Church numerals encode a number n as a function that takes f
and x, and applies fto x n times.

0 £ MM.x
1 2 M fx
2 & M f(fx)

This makes it easy to write the successor function:

SUCC £ An. Mf. \x. f(nfx)

21

Addition

Given the definition of SUCC, we can define addition. Intuitively,
the natural number n; + n, is the result of applying the
successor function n; times to n,.

PLUS £ A\n;. An,. n; SUCC n,

22

