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Review: \-calculus

Syntax
e = x|eie| e
v = \.e
Semantics
e, — €] e—¢e
e1e; — € e ve — ve

(M.e)v— e{v/x} 4



Rewind: Currying

This is just a function that returns a function:

ADD £ M. \y.x +y
ADD 38 — \y.38 +y

ADD 38 4 = (ADD 38) 4 —#42

Informally, you can think of it as a curried function that takes
two arguments, one after the other.

But that’s just a way to get intuition. The A-calculus only has
one-argument functions.



de Bruijn Notation

Another way to avoid the tricky issues with substitution is to use
a nameless representation of terms.

ex=n|lelee



de Bruijn Notation

Another way to avoid the tricky issues with substitution is to use
a nameless representation of terms.

ex=n|lelee

Abstractions have lost their variables!

Variables are replaced with numerical indices!



Examples

Here are some terms written in standard and de Bruijn notation:

| Standard | de Bruijn |
XX A0
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Examples

Here are some terms written in standard and de Bruijn notation:

| Standard | de Bruijn |
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A2z A0
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Examples

Here are some terms written in standard and de Bruijn notation:

| Standard | de Bruijn |
AX.X .0
A\z2.z .0
AXY.X A1
MAYASAZXS(Ysz) | AAAAN31(210)
(Mxx) (Ax.x x) (A.00) (A.00)
(M Axx) (Ay.y) (A.X.0) (A.0)

(6]



Free variables

To represent a A\-expression that contains free variables in de
Bruijn notation, we need a way to map the free variables to
integers.

We will work with respect to a map I from variables to integers
called a context.

Examples:

Suppose that ' maps xto 0 and y to 1.

e Representation of xyis01
e Representation of A\z. x y z-\. 120

- \
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Shifting

To define substitution, we will need an operation that shifts by i
the variables above a cutoff c:

100 = {0y oo

n +I otherW|se
Tlc ()“e) - )‘ c+1
Tt (e1e;) = (10 e1) (T' €,)

The cutoff ¢ keeps track of the variables that were bound in the
original expression and so should not be shifted.

The cutoff is 0 initially.



Substitution

Now we can define substitution as follows:

e ifn=m

n{e/m} - n otherwise
(he){e/m} = Meu{(1} e)/m+1}))>
(erex){e/m} = (er{e/m})(e:{e/m}



Substitution

Now we can define substitution as follows:

ifn =
n{e/m} - i otI:\ervc:se

(he){e/m} = Ne{(fs €)/m +1}))

(ere2){e/m} = (er{e/m})(ex{e/m})

The (3 rule for terms in de Bruijn notation is just:

Cele > 1o (@l e)o))



Example

Consider the term (Au.Av.u x) y with respect to a context where
(x)=0andl(y) = 1.
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Example

Consider the term (Au.Av.u x) y with respect to a context where
M(x)=0andTl(y) =

(\112)1
= Too (A12){(151)/0})
= To ((A-12){2/0})

o (
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Example

Consider the term (Au.Av.u x) y with respect to a context where
M(x)=0andTl(y) =

(AA12)1
— To ((A.12){(15 1)/0})
= ((A 1 2){2/0})
= To AM(12){(152)/(0+1)})
— Rt A((12){3/1})



Example

Consider the term (Au.Av.u x) y with respect to a context where
M(x)=0andTl(y) =

(AAla

o (A12){(t5

)H{(1o 1)/0})
((A 1 2){2/0})
A((12){(15 2)

/(0+1)})
A(12){3/1))
T’l A(1{3/1}) (2{3/1})
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Example
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Example

Consider the term (Au.Av.u x) y with respect to a context where
M(x)=0andTl(y) =

(AAla

o (A12){(15 1)/0})
((A 1 2){2/0})
A((12){(152)/(0+1)})
((12){3/1})
T*l A(1{3/1}) (2{3/1})
1ot A32
A21

o



Example

Consider the term (Au.Av.u x) y with respect to a context where
M(x)=0andTl(y) =

(AAla

o (A12){(15 1)/0})
((A 1 2){2/0})
A((12){(152)/(0+1)})
((12){3/1})
*1 A-(1{3/1}) (2{3/1})
1ot A32
A21

o

which, in standard notation (with respect to I'), is the same as
AV.Y X.



Combinators

Another way to avoid the issues having to do with free and
bound variable names in the A-calculus is to work with closed
expressions or combinators.

With just three combinators, we can encode the entire
A-calculus.

10



Combinators

Another way to avoid the issues having to do with free and
bound variable names in the A-calculus is to work with closed
expressions or combinators.

With just three combinators, we can encode the entire
A-calculus.

K= MA\y. x
S =M.z xz(y2)
| = M. x



Combinators

We can even define independent evaluation rules that don’t
depend on the A-calculus at all.

Behold the “SKl-calculus”:

Ke,e, — e;
Sejee3 — e e;(ere3)
le —» e

You would never want to program in this language—it doesn’t
even have variables!—but it’s exactly as powerful as the
A-calculus.



Bracket Abstraction

The function [x] that takes a combinator term M and builds
another term that behaves like A\x.M:

X]x =1
X]N = KN where x & fv(N)
AN N2 = S([x] V1) (X N2)

The ideais that ([x] M) N — M{N/x} for every term N.

12



Bracket Abstraction

We then define a function (e)* that maps a A-calculus
expression to a combinator term:

(x)x = x

(e1e)x = (e1)* (ex)x
(Mx.e)x = [x](e)x

13



Example

As an example, the expression \x.\y. x is translated as follows:

(AX Y. X)*
= [X] (\y. x)*
= (WX
= [X(Kx)
= (S(XK) (X]x))
= S(KK)I

No variables in the final combinator term!

14



Example

We can check that this behaves the same as our original
A-expression by seeing how it evaluates when applied to
arbitrary expressions e; and e,.

(MY x) er e;
= (. e1) &
-7 €,



Example

We can check that this behaves the same as our original
A-expression by seeing how it evaluates when applied to
arbitrary expressions e; and e,.

(MY x) er e;
— (\y.e1) e

- €3

and
(S(KK)) e, e,

I
—(KKey) (lep) e,
~Ke; e,
-%el



SKI Without |

Looking back at our definitions...

Ke;je, = e
Se;e,e3 — e1e3(e;e3)
le — e

...l isn’t strictly necessary. It equals S K K.
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SKI Without |

Looking back at our definitions...
Keie, — e;

Se;e,e3 — e1e3(e;e3)
le — e

...l isn’t strictly necessary. It equals S K K.

Our example becomes:

S (KK) (SKK)

16



Encodings

The pure A-calculus contains only functions as values. It is not
exactly easy to write large or interesting programs in the pure
A-calculus. We can however encode objects, such as booleans,
and integers.

17



Booleans

We need to define functions TRUE, FALSE, AND, NOT, IF, and
other operators that behave as follows:

AND TRUE FALSE - FALSE
NOT FALSE —¥ TRUE
IFTRUEe; e, €;
IF FALSE e; e, €,

18



Booleans

We need to define functions TRUE, FALSE, AND, NOT, IF, and
other operators that behave as follows:

AND TRUE FALSE ~* FALSE
NOT FALSE - TRUE
IFTRUE e; €; ~* €
IF FALSE e; e, ~* e,

Let’s start by defining TRUE and FALSE:

TRUE £ \x. \y. x
FALSE £ )\x. \y.y

18



Booleans

We want the function IF to behave like

Ab. \t. M. if b = TRUE then telsef.

19



Booleans

We want the function IF to behave like
Ab. At. M. if b = TRUE then telse f.
The definitions for TRUE and FALSE make this very easy.

IF2 M. AN btS
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Booleans

We want the function IF to behave like
Ab. At. Mf.if b = TRUE then telse f.
The definitions for TRUE and FALSE make this very easy.
IF 2 \b. At A.btF
We can also write the standard Boolean operators.

NOT £ \b. b FALSE TRUE
AND £ \b;. \b,. by b, FALSE
OR £ \b;. \b,. b; TRUE b,

19



Church Numerals

Let’s encode the natural numbers!

We’ll write n for the encoding of the number n. The central
function we’ll need is a successor operation:

SUCCn=n+1

20



Church Numerals

Church numerals encode a number n as a function that takes f
and x, and applies fto x n times.

0 £ MM.x
1 2 M fx
2 & M f(fx)
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Church Numerals

Church numerals encode a number n as a function that takes f
and x, and applies fto x n times.

0 £ MM.x
1 2 M fx
2 & M f(fx)

This makes it easy to write the successor function:

SUCC £ An. Mf. \x. f(nfx)

21



Addition

Given the definition of SUCC, we can define addition. Intuitively,
the natural number n; + n, is the result of applying the
successor function n; times to n,.

PLUS £ A\n;. An,. n; SUCC n,

22



