
CS 4110 – Programming Languages and Logics
Lecture #24: Compiling with Continuations

Because continuations expose control explicitly, they make a good intermediate language for
compilation—control is exposed explicitly in machine code as well. We can show this by writing
a translation from a full-featured functional language down to an assembly-like language. This
translation will give us a fairly complete recipe for compiling any of the language features we
have discussed over the past few lectures all the way down to hardware.

1 Source language

Our source language looks like the lambda calculus with tuples and numbers. We assume the
standard call-by-value semantics.

e ::= x | λx. e | e1 e2 | (e1, e2) | #i e | n | e1 + e2

The target language looks like a simple assembly language:

p ::= bb1; bb2; . . . ; bbn

bb ::= lb : c1; c2; . . . ; cn; jump x

c ::= mov x1, x2

| mov x, n

| mov x, lb

| add x1, x2, x3

| load x1, x2[n]

| store x1, x2[n]

| malloc n

A program p consists of a series of basic blocks bb, each with a distinct label lb. Each basic block
contains a sequence of commands c and ends with a jump instruction. Commands correspond
to assembly language instructions and are largely self-evident; the only one that is high-level is
the malloc instruction, which allocates n words of space and places the address of the space into
a special register r0. (This can be implemented as simply as add r0, r0, −n if we are not worried
about garbage.)

The jump instruction is an indirect jump. It makes the program counter take the value of the
argument register: essentially, jump x acts like mov pc, x.

2 Intermediate language #1

The first intermediate language, IL1, is in continuation-passing style:

1

v ::= n | x | λx. λk. c | halt | λx.c
e ::= v | v1 + v2 | (v1, v2) | (#i v)

c ::= let x = e in c

| v1 v2 v3

| v1 v2

There are a few things to note about the intermediate language:

• Lambda abstractions corresponding to continuations are marked with a underline. These are
considered administrative lambdas that we will eliminate at compile time, either by reducing
them or by converting them to real lambdas.

• There are no subexpressions in the language (e does not occur in its own definition).

• Commands c look like basic blocks:

let x1 = e1 in
let x2 = e2 in

. . .
let xn = en in
v0 v1 v2

• Lambdas are not closed and can occur inside other lambdas.

The contract of the translation is that [[e]]k will evaluate e and pass its result to the continuation
k. To translate an entire program, we use k = halt, where halt is the continuation to send the result
of the entire program to. Here is the translation from the source to the first intermediate language:

[[x]] k = k x

[[n]] k = k n

[[(e1 + e2)]] k = [[e1]]
(
λx1.[[e2]](λx2. let z = x1 + x2 in k z)

)
[[(e1, e2)]] k = [[e1]]

(
λx1.[[e2]]

(
λx2. let t = (x1, x2) in k t

))
[[#i e]] k = [[e]](λt. let y = #i t in k y)

[[λx. e]] k = k (λx. λk′. [[e]] k′)

[[e1 e2]] k = [[e1]]
(
λf.[[e2]]

(
λv.f v k

))

2

Let’s see an example. We translate the expression [[(λa.#1 a) (3, 4)]] k, using k = halt.

[[(λa.#1 a) (3, 4)]] k

= [[λa.#1 a]] (λf. [[(3, 4)]](λv. f v k))

= (λf. [[(3, 4)]](λv. f v k)) (λa. λk′. [[#1 a]] k′)

= (λf. [[3]]
(
λx1.[[4]](λx2. let b = (x1, x2) in (λv. f v k) b)

)
(λa. λk′. [[#1 a]] k′)

= (λf.
(
λx1. (λx2. let b = (x1, x2) in (λv. f v k) b) 4

)
3) (λa. λk′. [[#1 a]] k′)

= (λf.
(
λx1. (λx2. let b = (x1, x2) in (λv. f v k) b) 4

)
3) (λa. λk′. [[a]](λt. let y = #1 t in k′ y))

Clearly, the translation generates a lot of administrative lambdas, which will be quite expen-
sive if they are compiled into machine code. To make the code more efficient and compact, we
will optimize it using some simple rewriting rules to eliminate administrative lambdas. We can
eliminate unnecessary application to a variable, by copy propagation:

(λx.e) y → e{y/x}

Other unnecessary administrative lambdas can be converted into lets:

(λx.c)v → let x = v in c

We can also perform administrative η-reductions:

λx.k x → k

If we apply these rules to the expression above, we get

let f = λ a. λ k′. let y = #1 a in k′ y in
let x1 = 3 in

let x2 = 4 in
let b = (x1, x2) in
f b k

This is starting to look a lot more like our target language.
The idea of separating administrative terms from real terms and performing a compile-time

simplification—often known as partial evaluation—is powerful and can be used in many other
contexts. Here, it allows us to write a very simple CPS conversion that treats all continuations uni-
formly, and perform a number of control optimizations. Note that we may not be able to remove
all administrative lambdas. Any that cannot be eliminated using the rules above are converted
into real lambdas.

3 Intermediate Language #1 → Intermediate Language #2

The next step is the translation from IL1 to IL2. In this intermediate language, all lambdas are at
the top level, with no nesting:

3

P ::= let xf = λx1. . . . λxn. λk. c in P

| let xc = λx1. . . . λxn. c in P

| c
c ::= let x = e in c | x1 x2 . . . xn
e ::= n | x | halt | x1 + x2 | (x1, x2) | #i x

The key idea behind the translation from IL1 to IL2 is to “lift” all lambdas up to the top level
while preserving lexical scope. More specifically, this translation requires the construction of clo-
sures that capture the free variables of the lambda abstractions. This translation is known as closure
conversion.

The main part of the translation is captured by the following:

[[λx. λk. c]] σ = let (c′, σ′) = [[c]] σ in
let y1, . . . , yn = fvs(λx. λk. c′) in
(f y1 . . . yn, σ

′[f 7→ λy1. . . . λyn. λx. λk. c
′]) where f fresh

The translation takes an expression possibly containing nested lambdas and an environment σ
mapping variables to lambdas. It produces a lambda-free expression and an extended environ-
ment. Intuitively, the environment collects up the functions that must be lifted to the top level of
the program. The translation of λx. λk. c in the definition above first translates the body c, then
creates a new function f parameterized on x as well as the free variables y1 to yn of the translated
body. It then adds f to the environment σ replaces the entire lambda with (f yn . . . yn). Overall,
this has the effect of eliminating all nested lambdas.

4 Intermediate Language #2 → Assembly

The final translation from IL2 to assembly is given in Figure 1. Note that ra is the name of the
dedicated register that holds the return address. In addition, we assume an infinite supply of
registers. We need to do register allocation and possibly spill registers to a stack to obtain working
code.

Finally, note that while this translation is very simple, it is not particularly efficient. For exam-
ple, we are doing a lot of register moves when calling functions and when starting the function
body, which could be optimized.

4

P[[c]] = main : C[[c]];
halt :

P[[let xf = λx1. . . . λxn. λk. c in p]] = xf : mov x1, a1;

...
mov xn, an;

mov k, ra;

C[[c]];
P[[p]]

P[[let xc = λx1. . . . λxn. c in p]] = xc : mov x1, a1;

...
mov xn, an;

C[[c]];
P[[p]]

C[[let x = n in c]] = mov x, n; C[[c]]
C[[let x1 = x2 in c]] = mov x1, x2; C[[c]]

C[[let x = x1 + x2 in c]] = add x1, x2, x;

C[[c]]
C[[let x = (x1, x2) in c]] = malloc 2;

mov x, r0;

store x1, x[0];

store x2, x[1];

C[[c]]
C[[let x = #i x1 in c]] = load x, x1[i];

C[[c]]
C[[x k x1 . . . xn]] = mov a1, x1;

...
mov an, xn;

mov ra, k;

jump x

Figure 1: Compilation to assembly.

5

