
CS 4110 – Programming Languages and Logics
Lecture #22: Polymorphism

1 Parametric polymorphism

Polymorphism (Greek for “many forms”) is the ability for code to be used with values of different
types. For example, a polymorphic function is one that can be invoked with arguments of different
types. A polymorphic datatype is one that can contain elements of different types.

There are several different kinds of polymorphism that are commonly used in modern pro-
gramming languages.

• Subtype polymorphism allows a term to have many types using the subsumption rule, which
allows a value of type τ to masquerade as a value of type τ ′ provided that τ is a subtype of
τ ′.

• Ad-hoc polymorphism usually refers to code that appears to be polymorphic to the program-
mer, but the actual implementation is not. For example, languages with overloading allow
the same function name to be used with functions that take different types of parameters.
Although it looks like a polymorphic function to the code that uses it, there are actually
multiple function implementations (none being polymorphic) and the compiler invokes the
appropriate one. Ad-hoc polymorphism is a dispatch mechanism: the type of the arguments
is used to determine (either at compile time or run time) which code to invoke.

• Parametric polymorphism refers to code that is written without knowledge of the actual type
of the arguments; the code is parametric in the type of the parameters. Examples include
polymorphic functions in ML and Java generics.

In this lecture we will consider parametric polymorphism in detail. As a motivating example,
suppose we are working in the simply-typed λ-calculus, and consider a “doubling” function for
integers that takes a function f , and an integer x, applies f to x, and then applies f to the result.

doubleInt ≜ λf : int → int. λx : int. f (f x)

We could also write a double function for booleans. Or for functions over integers. Or for any
other type...

doubleBool ≜ λf :bool → bool. λx :bool. f (f x)

doubleFn ≜ λf : (int → int) → (int → int). λx : int → int. f (f x)

...

In the simply-typed λ-calculus, if we want to apply the doubling operation to different types
of arguments in the same program, we need to write a new function for each type. This violates a
fundamental principle of software engineering:
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Abstraction Principle: Every major piece of functionality in a program should be imple-
mented in just one place in the code. When similar functionality is provided by distinct pieces
of code, the two should be combined into one by abstracting out the varying parts.

In the doubling functions above, the varying parts are the types. We need a way to abstract out
the type of the doubling operation, and later instantiate it with different concrete types.

1.1 Polymorphic λ-calculus

We can extend the simply-typed λ-calculus with abstraction over types. The resulting system is
known by two names: polymorphic λ-calculus and System F.

A type abstraction is a new expression, written ΛX. e, where Λ is the upper-case form of the
Greek letter lambda, and X is a type variable. A type application, written e1 [τ ], instantiaties a type
application at a particular type.

When a type abstraction meets a type application during evaluation, we substitute the free
occurrences of the type variable with the type. Importantly, instantiation does not require the
program to keep run-time type information, or to perform type checks at run-time; it is just used
as a way to statically check type safety in the presence of polymorphism.

1.2 Syntax and operational semantics

The syntax of the polymorphic λ-calculus is given by the following grammar.

e ::= n | x | λx :τ. e | e1 e2 | ΛX. e | e [τ ]
v ::= n | λx :τ. e | ΛX. e

The evaluation rules are the same as for the simply-typed λ-calculus, as well as two new rules
for evaluating type abstractions and applications.

E ::= [·] | E e | v E | E [τ ]

e → e′

E[e] → E[e′]
β-REDUCTION

(λx :τ. e) v → e{v/x}

TYPE-REDUCTION
(ΛX. e) [τ ] → e{τ/X}

To illustrate, consider a simple example. In this language, the polymorphic identity function
is written as

ID ≜ ΛX.λx :X.x

We can apply the polymorphic identity function to int, yielding the identity function on integers.

(ΛX.λx :X.x) [int] → λx : int. x

We can apply ID to other types as well:

(ΛX.λx :X.x) [int → int] → λx : int → int. x
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1.3 Type system

We also need to provide a type for the new type abstraction. The type of ΛX. e is ∀X. τ , where τ
is the type of e, and may contain the type variable X . Intuitively, we use this notation because we
can instantiate the type expression with any type for X : for any type X , expression e can have the
type τ (which may mention X).

Type checking expressions is slightly different than before. Besides the type environment Γ
(which maps variables to types), we also need to keep track of the set of type variables ∆. This is
to ensure that a type variable X is only used in the scope of an enclosing type abstraction ΛX. e.
Thus, typing judgments are now of the form ∆,Γ ⊢ e : τ , where ∆ is a set of type variables, and Γ
is a typing context. We also use an additional judgment ∆ ⊢ τ ok to ensure that type τ uses only
type variables from the set ∆.

∆,Γ ⊢ n : int ∆,Γ ⊢ x :τ
Γ(x) = τ

∆,Γ, x :τ ⊢ e :τ ′ ∆ ⊢ τ ok

∆,Γ ⊢ λx :τ. e :τ → τ ′

∆,Γ ⊢ e1 :τ → τ ′ ∆,Γ ⊢ e2 :τ

∆,Γ ⊢ e1 e2 :τ
′

∆ ∪ {X},Γ ⊢ e :τ

∆,Γ ⊢ ΛX. e :∀X. τ

∆,Γ ⊢ e :∀X. τ ′ ∆ ⊢ τ ok

∆,Γ ⊢ e [τ ] :τ ′{τ/X}

∆ ⊢ X ok
X ∈ ∆

∆ ⊢ int ok
∆ ⊢ τ1 ok ∆ ⊢ τ2 ok

∆ ⊢ τ1 → τ2 ok

∆ ∪ {X} ⊢ τ ok

∆ ⊢ ∀X. τ ok

2 Programming in Polymorphic λ-Calculus

Now we consider a number of examples of programming in the polymorphic λ-calculus.

2.1 Doubling

Let’s consider the doubling operation again. We can write a polymorphic doubling operation as

double ≜ ΛX.λf :X → X.λx :X. f (f x).

The type of this expression is
∀X. (X → X) → X → X

We can instantiate this on a type, and provide arguments. For example,

double [int] (λn : int. n+ 1) 7 → (λf : int → int. λx : int. f (f x)) (λn : int. n+ 1) 7

→∗ 9

3



2.2 Self Application

Recall that in the simply-typed λ-calculus, we had no way of typing the expression λx. x x. In the
polymorphic λ-calculus, however, we can type this expression if we give it a polymorphic type
and instantiate it appropriately.

⊢ λx :∀X. X → X.x [∀X. X → X] x : (∀X. X → X) → (∀X. X → X)

2.3 Sums and Products

We can encode sums and products in polymorphic λ-calculus without adding any additional
types! The encodings are based on the Church encodings from untyped λ-calculus.

τ1 × τ2 ≜ ∀R. (τ1 → τ2 → R) → R

(·, ·) ≜ ΛT1. ΛT2. λv1 : T1, λv2 : T2. ΛR. λp : (T1 → T2 → R). p v1 v 2

π1 ≜ ΛT1. ΛT2. λv : T1 × T2. v [T1] (λx : T1. λy : T2. x)

π2 ≜ ΛT1. ΛT2. λv : T1 × T2. v [T2] (λx : T1. λy : T2. y)

unit ≜ ∀R. R → R

() ≜ ΛR. λx : R. x

τ1 + τ2 ≜ ∀R.(τ1 → R) → (τ2 → R) → R

inl ≜ ΛT1. ΛT2. λv1 : T1. ΛR. λb1 : T1 → R. λb2 : T2 → R. b1 v1
inr ≜ ΛT1. ΛT2. λv2 : T2. ΛR. λb1 : T1 → R. λb2 : T2 → R. b2 v2

case ≜ ΛT1. ΛT2. ΛR. λv : T1 + T2. λb1 : T1 → R. λb2 : T2 → R. v [R] b1 b2

void ≜ ∀R. R

3 Type Erasure

The semantics presented above explicitly passes type. In an implementation, one often wants to
eliminate types for efficiency. The following translation “erases” the types from a polymorphic
λ-calculus expression.

erase(x) = x
erase(λx :τ. e) = λx. erase(e)

erase(e1 e2) = erase(e1) erase(e2)
erase(ΛX. e) = λz. erase(e) where z is fresh for e
erase(e [τ ]) = erase(e) (λx. x)

The following theorem states that the translation is adequate.

Theorem (Adequacy). For all expressions e and e′, we have e → e′ iff erase(e) → erase(e′).

4 Type Inference

The type reconstruction problem asks whether, for a given untyped λ-calculus expression e′ there
exists a well-typed System F expression e such that erase(e) = e′. It was shown to be undecidable
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by Wells in 1994. See Chapter 23 of Pierce for further discussion, as well as restrictions for which
type reconstruction is decidable.
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