
CS 4110 – Programming Languages and Logics
Lecture #14: More λ-calculus

1 Lambda calculus evaluation

There are many different evaluation strategies for the λ-calculus. The most permissive is full β
reduction, which allows any redex—i.e., any expression of the form (λx. e1) e2—to step to e1{e2/x}
at any time. It is defined formally by the following small-step operational semantics rules:

e1 → e′1

e1 e2 → e′1 e2

e2 → e′2

e1 e2 → e1 e
′
2

e1 → e′1

λx. e1 → λx. e′1
β

(λx. e1) e2 → e1{e2/x}

The call by value (CBV) strategy enforces a more restrictive strategy: it only allows an application
to reduce after its argument has been reduced to a value (i.e., a λ-abstraction) and does not allow
evaluation under a λ. It is described by the following small-step operational semantics rules (here
we show a left-to-right version of CBV):

e1 → e′1

e1 e2 → e′1 e2

e2 → e′2

v1 e2 → v1 e
′
2

β
(λx. e1) v2 → e1{v2/x}

Finally, the call by name (CBN) strategy allows an application to reduce even when its argument is
not a value but does not allow evaluation under a λ. It is described by the following small-step
operational semantics rules:

e1 → e′1

e1 e2 → e′1 e2
β

(λx. e1) e2 → e1{e2/x}

2 Confluence

It is not hard to see that the full β reduction strategy is non-deterministic. This raises an interesting
question: does the choices made during the evaluation of an expression affect the final result? The
answer turns out to be no: full β reduction is confluent in the following sense:

Theorem (Confluence). If e→∗ e1 and e→∗ e2 then there exists e′ such that e1 →∗ e′ and e2 →∗ e′.

Confluence can be depicted graphically as follows:

e

e1 e2

e′

Confluence is often also called the Church-Rosser property.

1



3 Substitution

Each of the evaluation relations for λ-calculus has a β defined in terms of a substitution operation
on expressions. Because the expressions involved in the substitution may share some variable
names (and because we are working up to α-equivalence) the definition of this operation is slightly
subtle and defining it precisely turns out to be tricker than might first appear.

As a first attempt, consider an obvious (but incorrect) definition of the substitution operator.
Here we are substituting e for x in some other expression:

y{e/x} =

{
e if y = x
y otherwise

(e1 e2){e/x} = (e1{e/x}) (e2{e/x})
(λy.e1){e/x} = λy.e1{e/x} where y ̸= x

The intuitive idea is that the last rule relies on α-equivalence to “rewrite” abstractions that use x so
they do not conflict. Unfortunately, this definition produces the wrong results when we substitute
an expression with free variables under a λ. For example,

(λy.x){y/x} = (λy.y)

To fix this problem, we need to revise our definition so that when we substitute under a λ we
do not accidentally bind variables in the expression we are substituting. The following definition
correctly implements capture-avoiding substitution:

y{e/x} =

{
e if y = x
y otherwise

(e1 e2){e/x} = (e1{e/x}) (e2{e/x})
(λy.e1){e/x} = λy.(e1{e/x}) where y ̸= x and y ̸∈ fv(e)

Note that in the case for λ-abstractions, we require that the bound variable y be different from the
variable x we are substituting for and that y not appear in the free variables of e, the expression
we are substituting. Because we work up to α-equivalence, we can always pick y to satisfy these
side conditions. For example, to calculate (λz.x z){(w y z)/x} we first rewrite λz.x z to λu.x u and
then apply the substitution, obtaining λu.(w y z) u as the result.

2


