CS 4110 - Programming Languages and Logics Lecture \#14: More λ-calculus

1 Lambda calculus evaluation

There are many different evaluation strategies for the λ-calculus. The most permissive is full β reduction, which allows any redex-i.e., any expression of the form $\left(\lambda x . e_{1}\right) e_{2}$-to step to $e_{1}\left\{e_{2} / x\right\}$ at any time. It is defined formally by the following small-step operational semantics rules:

$$
\frac{e_{1} \rightarrow e_{1}^{\prime}}{e_{1} e_{2} \rightarrow e_{1}^{\prime} e_{2}} \quad \frac{e_{2} \rightarrow e_{2}^{\prime}}{e_{1} e_{2} \rightarrow e_{1} e_{2}^{\prime}} \quad \frac{e_{1} \rightarrow e_{1}^{\prime}}{\lambda x . e_{1} \rightarrow \lambda x . e_{1}^{\prime}} \quad \beta \frac{}{\left(\lambda x . e_{1}\right) e_{2} \rightarrow e_{1}\left\{e_{2} / x\right\}}
$$

The call by value (CBV) strategy enforces a more restrictive strategy: it only allows an application to reduce after its argument has been reduced to a value (i.e., a λ-abstraction) and does not allow evaluation under a λ. It is described by the following small-step operational semantics rules (here we show a left-to-right version of CBV):

$$
\frac{e_{1} \rightarrow e_{1}^{\prime}}{e_{1} e_{2} \rightarrow e_{1}^{\prime} e_{2}} \quad \frac{e_{2} \rightarrow e_{2}^{\prime}}{v_{1} e_{2} \rightarrow v_{1} e_{2}^{\prime}} \quad \beta \frac{}{\left(\lambda x . e_{1}\right) v_{2} \rightarrow e_{1}\left\{v_{2} / x\right\}}
$$

Finally, the call by name (CBN) strategy allows an application to reduce even when its argument is not a value but does not allow evaluation under a λ. It is described by the following small-step operational semantics rules:

$$
\frac{e_{1} \rightarrow e_{1}^{\prime}}{e_{1} e_{2} \rightarrow e_{1}^{\prime} e_{2}}
$$

$$
\beta \overline{\left(\lambda x . e_{1}\right) e_{2} \rightarrow e_{1}\left\{e_{2} / x\right\}}
$$

2 Confluence

It is not hard to see that the full β reduction strategy is non-deterministic. This raises an interesting question: does the choices made during the evaluation of an expression affect the final result? The answer turns out to be no: full β reduction is confluent in the following sense:

Theorem (Confluence). If $e \rightarrow^{*} e_{1}$ and $e \rightarrow^{*} e_{2}$ then there exists e^{\prime} such that $e_{1} \rightarrow^{*} e^{\prime}$ and $e_{2} \rightarrow^{*} e^{\prime}$.
Confluence can be depicted graphically as follows:

Confluence is often also called the Church-Rosser property.

3 Substitution

Each of the evaluation relations for λ-calculus has a β defined in terms of a substitution operation on expressions. Because the expressions involved in the substitution may share some variable names (and because we are working up to α-equivalence) the definition of this operation is slightly subtle and defining it precisely turns out to be tricker than might first appear.

As a first attempt, consider an obvious (but incorrect) definition of the substitution operator. Here we are substituting e for x in some other expression:

$$
\begin{aligned}
y\{e / x\} & = \begin{cases}e & \text { if } y=x \\
y & \text { otherwise }\end{cases} \\
\left(e_{1} e_{2}\right)\{e / x\} & =\left(e_{1}\{e / x\}\right)\left(e_{2}\{e / x\}\right) \\
\left(\lambda y \cdot e_{1}\right)\{e / x\} & =\lambda y \cdot e_{1}\{e / x\} \quad \text { where } y \neq x
\end{aligned}
$$

The intuitive idea is that the last rule relies on α-equivalence to "rewrite" abstractions that use x so they do not conflict. Unfortunately, this definition produces the wrong results when we substitute an expression with free variables under a λ. For example,

$$
(\lambda y \cdot x)\{y / x\}=(\lambda y \cdot y)
$$

To fix this problem, we need to revise our definition so that when we substitute under a λ we do not accidentally bind variables in the expression we are substituting. The following definition correctly implements capture-avoiding substitution:

$$
\begin{aligned}
y\{e / x\} & = \begin{cases}e & \text { if } y=x \\
y & \text { otherwise }\end{cases} \\
\left(e_{1} e_{2}\right)\{e / x\} & =\left(e_{1}\{e / x\}\right)\left(e_{2}\{e / x\}\right) \\
\left(\lambda y \cdot e_{1}\right)\{e / x\} & =\lambda y \cdot\left(e_{1}\{e / x\}\right) \quad \text { where } y \neq x \text { and } y \notin f v(e)
\end{aligned}
$$

Note that in the case for λ-abstractions, we require that the bound variable y be different from the variable x we are substituting for and that y not appear in the free variables of e, the expression we are substituting. Because we work up to α-equivalence, we can always pick y to satisfy these side conditions. For example, to calculate $(\lambda z . x z)\{(w y z) / x\}$ we first rewrite $\lambda z . x z$ to $\lambda u . x u$ and then apply the substitution, obtaining $\lambda u .(w y z) u$ as the result.

