CS 4110 — Programming Languages and Logics
Lecture #7: Denotational Semantics

We have now seen two operational models for programming languages: small-step and large-
step. In this lecture, we consider a different semantic model, called denotational semantics.

The idea in denotational semantics is to express the meaning of a program as the mathematical
function that expresses what the program computes. We can think of an IMP program c as a
function from stores to stores: given an an initial store, the program produces a final store. For
example, the program foo := bar+1 can be thought of as a function that when given an input store
o, produces a final store ¢’ that is identical to o except that it maps foo to the integer o(bar) + 1;
thatis, o/ = o[foo — o(bar) + 1]. We will model programs as functions from input stores to output
stores. As opposed to operational models, which tell us how programs execute, the denotational
model shows us what programs compute.

1 A Denotational Semantics for IMP

For each program ¢, we write C[c] for the denotation of ¢, that is, the mathematical function that ¢
represents:
C[c] : Store — Store.

Note that C[c] is actually a partial function (as opposed to a total function), both because the store
may not be defined on the free variables of the program and because program may not terminate
for certain input stores. The function C[c] is not defined for non-terminating programs as they
have no corresponding output stores.

We will write C[c]o for the result of applying the function C[c] to the store o. That is, if f is the
function that C[c] denotes, then we write C[c]o to mean the same thing as f(o).

We must also model expressions as functions, this time from stores to the values they represent.
We will write AJa] for the denotation of arithmetic expression a, and B[] for the denotation of
boolean expression b.

Ala] : Store — Int
B[b] : Store — {true, false}

Now we want to define these functions. To make it easier to write down these definitions, we will
describe (partial) functions using sets of pairs. More precisely, we will represent a partial map
f:A— Basasetof pairs F = {(a,b) | a € Aand b = f(a) € B} such that, for each a € A, there
is at most one pair of the form (a, _) in the set. Hence (a, b) € F is the same as b = f(a).



We can now define denotations for IMP. We start with the denotations of expressions:

Aln] = {(o,n)}
Alz] ={(0,0(2))}
Alar + a2] = {(o,n) | (o,n1) € Alai] A (o,n2) € Afaz] An=ny +na}

B[true] = {(o,true)}

B[false] = {(o,false)}

Bla1 < az] = {(o,true) | (o,n1) € Afai] A (o,n2) € Afaz] Ani < n2} U
{(o,false) | (o,n1) € AJai] A (0,n2) € AJa2] Ani > na}

The denotations for commands are as follows:

C[skip] = {(c,0)}
Clz :=a] = {(o,0]x — n]) | (o,n) € Ala]}
Cler;ea] = {(o,0") | 3o”. ((0,0") € Cler] A (6", 0") € Clea])}

Note that C[c1; c2] = C[cz2] o C[ec1], where o is the composition of relations, defined as follows: if
Ry CAxBand Ry C BxCthen RyoR; C AxCis ReoRy = {(a,c) | 3b € B.(a,b) € RiA(b,c) €
Ry}.) If C[e1] and C[ez] are total functions, then o is function composition.

C[if b then ¢, else ;] =

Cwhile bdo c] =

But now we have a problem: the last “definition” is not really a definition because it expresses
C[while b do c] in terms of itself! This is not a definition but a recursive equation. What we want
is the solution to this equation.

2 Fixed points

We gave a recursive equation that the function C[while b do ¢] must satisfy. To understand some
of the issues involved, let’s consider a simpler example. Consider the following equation for a

function f : N — N.
0 ifr=0
flz) = : (1)
flx—=1)+ 22 —1 otherwise

This is not a definition for f, but rather an equation that we want f to satisfy. What function, or
functions, satisfy this equation for f? The only solution to this equation is the function f(z) = z2.

In general, there may be no solutions for a recursive equation (e.g., there are no functions
g : N — N that satisfy the recursive equation g(x) = g(x) + 1), or multiple solutions (e.g., find two

functions g : R — R that satisfy g(z) = 4 x g(5)).



We can compute solutions to such equations by building successive approximations. Each
approximation is closer and closer to the solution. To solve the recursive equation for f, we start
with the partial function fy = 0 (i.e., fj is the empty relation; it is a partial function with the empty
set for it’s domain). We compute successive approximations using the recursive equation.

0

0 ifz=0
folx = 1)+ 2z —1 otherwise

={(0,0)}

)0 ifx=0

"\ filw—1)+2z—1 otherwise

= {(03 >

_Jo ifz=0

B fo(x —1)4+ 2z —1 otherwise
={(0,0),(1,1),(2,4)}

This sequence of successive approximations f; gradually builds the function f(z) = 22.

We can model this process of successive approximations using a higher-order function F' that
takes one approximation f; and returns the next approximation fj1:

F:N—=N)— (N—=N)
where

0 ifr=0
f(zx—1)+2x—1 otherwise

(F(f)(x) = {

A solution to the recursive equation 1 is a function f such that f = F(f). In general, given a
function F' : A — A, we have that a € A is a fixed point of F if F'(a) = a. We also write a = fix(F')
to indicate that a is a fixed point of F'.

So the solution to the recursive equation 1 is a fixed-point of the higher-order function F. We
can compute this fixed point iteratively, starting with fo = 0 and at each iteration computing
fr+1 = F(fr). The fixed point is the limit of this process:

f=fix(F)
=foUfiufaUfsU...
=0UF)UFF@)UFFFE@D)U...

=JF'®)

i>0



