
CS 4110 – Programming Languages and Logics
Lecture #7: Denotational Semantics

We have now seen two operational models for programming languages: small-step and large-
step. In this lecture, we consider a different semantic model, called denotational semantics.

The idea in denotational semantics is to express the meaning of a program as the mathematical
function that expresses what the program computes. We can think of an IMP program c as a
function from stores to stores: given an an initial store, the program produces a final store. For
example, the program foo := bar+1 can be thought of as a function that when given an input store
σ, produces a final store σ′ that is identical to σ except that it maps foo to the integer σ(bar) + 1;
that is, σ′ = σ[foo 7→ σ(bar)+ 1]. We will model programs as functions from input stores to output
stores. As opposed to operational models, which tell us how programs execute, the denotational
model shows us what programs compute.

1 A Denotational Semantics for IMP

For each program c, we write C[[c]] for the denotation of c, that is, the mathematical function that c
represents:

C[[c]] : Store ⇀ Store.

Note that C[[c]] is actually a partial function (as opposed to a total function), both because the store
may not be defined on the free variables of the program and because program may not terminate
for certain input stores. The function C[[c]] is not defined for non-terminating programs as they
have no corresponding output stores.

We will write C[[c]]σ for the result of applying the function C[[c]] to the store σ. That is, if f is the
function that C[[c]] denotes, then we write C[[c]]σ to mean the same thing as f(σ).

We must also model expressions as functions, this time from stores to the values they represent.
We will write A[[a]] for the denotation of arithmetic expression a, and B[[b]] for the denotation of
boolean expression b.

A[[a]] : Store ⇀ Int

B[[b]] : Store ⇀ {true, false}

Now we want to define these functions. To make it easier to write down these definitions, we will
describe (partial) functions using sets of pairs. More precisely, we will represent a partial map
f : A ⇀ B as a set of pairs F = {(a, b) | a ∈ A and b = f(a) ∈ B} such that, for each a ∈ A, there
is at most one pair of the form (a, ) in the set. Hence (a, b) ∈ F is the same as b = f(a).

1



We can now define denotations for IMP. We start with the denotations of expressions:

A[[n]] = {(σ, n)}
A[[x]] = {(σ, σ(x))}

A[[a1 + a2]] = {(σ, n) | (σ, n1) ∈ A[[a1]] ∧ (σ, n2) ∈ A[[a2]] ∧ n = n1 + n2}

B[[true]] = {(σ, true)}
B[[false]] = {(σ, false)}

B[[a1 < a2]] = {(σ, true) | (σ, n1) ∈ A[[a1]] ∧ (σ, n2) ∈ A[[a2]] ∧ n1 < n2} ∪
{(σ, false) | (σ, n1) ∈ A[[a1]] ∧ (σ, n2) ∈ A[[a2]] ∧ n1 ≥ n2}

The denotations for commands are as follows:

C[[skip]] = {(σ, σ)}
C[[x := a]] = {(σ, σ[x 7→ n]) | (σ, n) ∈ A[[a]]}
C[[c1; c2]] = {(σ, σ′) | ∃σ′′. ((σ, σ′′) ∈ C[[c1]] ∧ (σ′′, σ′) ∈ C[[c2]])}

Note that C[[c1; c2]] = C[[c2]] ◦ C[[c1]], where ◦ is the composition of relations, defined as follows: if
R1 ⊆ A×B and R2 ⊆ B×C then R2 ◦R1 ⊆ A×C is R2 ◦R1 = {(a, c) | ∃b ∈ B. (a, b) ∈ R1∧(b, c) ∈
R2}.) If C[[c1]] and C[[c2]] are total functions, then ◦ is function composition.

C[[if b then c1 else c2]] = {(σ, σ′) | (σ, true) ∈ B[[b]] ∧ (σ, σ′) ∈ C[[c1]]} ∪
{(σ, σ′) | (σ, false) ∈ B[[b]] ∧ (σ, σ′) ∈ C[[c2]]}

C[[while b do c]] = {(σ, σ) | (σ, false) ∈ B[[b]]} ∪
{(σ, σ′) | (σ, true) ∈ B[[b]] ∧ ∃σ′′. ((σ, σ′′) ∈ C[[c]] ∧ (σ′′, σ′) ∈ C[[while b do c]])}

But now we have a problem: the last “definition” is not really a definition because it expresses
C[[while b do c]] in terms of itself! This is not a definition but a recursive equation. What we want
is the solution to this equation.

2 Fixed points

We gave a recursive equation that the function C[[while b do c]] must satisfy. To understand some
of the issues involved, let’s consider a simpler example. Consider the following equation for a
function f : N → N.

f(x) =

{
0 if x = 0

f(x− 1) + 2x− 1 otherwise
(1)

This is not a definition for f , but rather an equation that we want f to satisfy. What function, or
functions, satisfy this equation for f? The only solution to this equation is the function f(x) = x2.

In general, there may be no solutions for a recursive equation (e.g., there are no functions
g : N → N that satisfy the recursive equation g(x) = g(x) + 1), or multiple solutions (e.g., find two
functions g : R → R that satisfy g(x) = 4× g(x2 )).

2



We can compute solutions to such equations by building successive approximations. Each
approximation is closer and closer to the solution. To solve the recursive equation for f , we start
with the partial function f0 = ∅ (i.e., f0 is the empty relation; it is a partial function with the empty
set for it’s domain). We compute successive approximations using the recursive equation.

f0 = ∅

f1 =

{
0 if x = 0

f0(x− 1) + 2x− 1 otherwise

= {(0, 0)}

f2 =

{
0 if x = 0

f1(x− 1) + 2x− 1 otherwise

= {(0, 0), (1, 1)}

f3 =

{
0 if x = 0

f2(x− 1) + 2x− 1 otherwise

= {(0, 0), (1, 1), (2, 4)}
...

This sequence of successive approximations fi gradually builds the function f(x) = x2.
We can model this process of successive approximations using a higher-order function F that

takes one approximation fk and returns the next approximation fk+1:

F : (N ⇀ N) → (N ⇀ N)

where

(F (f))(x) =

{
0 if x = 0

f(x− 1) + 2x− 1 otherwise

A solution to the recursive equation 1 is a function f such that f = F (f). In general, given a
function F : A → A, we have that a ∈ A is a fixed point of F if F (a) = a. We also write a = fix(F )
to indicate that a is a fixed point of F .

So the solution to the recursive equation 1 is a fixed-point of the higher-order function F . We
can compute this fixed point iteratively, starting with f0 = ∅ and at each iteration computing
fk+1 = F (fk). The fixed point is the limit of this process:

f = fix(F )

= f0 ∪ f1 ∪ f2 ∪ f3 ∪ . . .

= ∅ ∪ F (∅) ∪ F (F (∅)) ∪ F (F (F (∅))) ∪ . . .

=
∪
i≥0

F i(∅)

3


