
CS 4110 – Programming Languages and Logics
Lecture #4: Large-step semantics

 

1 Large-step operational semantics

In the last lecture we defined a semantics for our language of arithmetic expressions using a small-
step evaluation relation →⊆ Config×Config (and its reflexive and transitive closure →∗). In this
lecture we will explore an alternative approach—large-step operational semantics—which yields
the final result of evaluating an expression directly.

Defining a large-step semantics boils down to specifying a relation ⇓ that captures the evalua-
tion of an expression. The ⇓ relation has the following type:

⇓⊆ (Store×Exp)× (Store× Int).

We write ⟨σ, e⟩ ⇓ ⟨σ′, n⟩ to indicate that ((σ, e), (σ′, n)) ∈⇓. In other words, the expression e with
store σ evaluates in one big step to the final store σ′ and integer n.

We define the relation ⇓ inductively, using inference rules:

⟨σ, n⟩ ⇓ ⟨σ, n⟩
INT

n = σ(x)

⟨σ, x⟩ ⇓ ⟨σ, n⟩
VAR

⟨σ, e1⟩ ⇓ ⟨σ′, n1⟩ ⟨σ′, e2⟩ ⇓ ⟨σ′′, n2⟩ n = n1 + n2

⟨σ, e1 + e2⟩ ⇓ ⟨σ′′, n⟩
ADD

⟨σ, e1⟩ ⇓ ⟨σ′, n1⟩ ⟨σ′, e2⟩ ⇓ ⟨σ′′, n2⟩ n = n1 × n2

⟨σ, e1 * e2⟩ ⇓ ⟨σ′′, n⟩
MUL

⟨σ, e1⟩ ⇓ ⟨σ′, n1⟩ ⟨σ′[x 7→ n1], e2⟩ ⇓ ⟨σ′′, n2⟩
⟨σ, x := e1 ; e2⟩ ⇓ ⟨σ′′, n2⟩

ASSGN

To illustrate the use of these rules, consider the following proof tree, which shows that evaluating
⟨σ, foo := 3 ; foo * bar⟩ using a store σ such that σ(bar) = 7 yields σ′ = σ[foo 7→ 3] and 21 as a result:

⟨σ, 3⟩ ⇓ ⟨σ, 3⟩
INT

⟨σ′, foo⟩ ⇓ ⟨σ′, 3⟩
VAR

⟨σ′, bar⟩ ⇓ ⟨σ′, 7⟩
VAR

⟨σ′, foo * bar⟩ ⇓ ⟨σ′, 21⟩
MUL

⟨σ, foo := 3 ; foo * bar⟩ ⇓ ⟨σ′, 21⟩
ASSGN

A closer look to this structure reveals the relation between small step and large-step evaluation:
a depth-first traversal of the large-step proof tree yields the sequence of one-step transitions in
small-step evaluation.

1



2 Equivalence of semantics

A natural question to ask is whether the small-step and large-step semantics are equivalent. The
next theorem answers this question affirmatively.

Theorem (Equivalence of semantics). For all expressions e, stores σ and σ′, and integers n we have:

⟨σ, e⟩ ⇓ ⟨σ′, n⟩ if and only if ⟨σ, e⟩ →∗⟨σ′, n⟩

To streamline the proof, we will work with the following definition of the multi-step relation:

⟨σ, e⟩ →∗⟨σ, e⟩
REFL

⟨σ, e⟩ → ⟨σ′, e′⟩ ⟨σ′, e′⟩ →∗⟨σ′′, e′′⟩
⟨σ, e⟩ →∗⟨σ′′, e′′⟩

TRANS

Proof sketch. We show each direction separately.

=⇒: We want to prove that the following property P holds for all expressions e ∈ Exp:

P (e) ≜ ∀σ, σ′ ∈ Store. ∀n ∈ Int. ⟨σ, e⟩ ⇓ ⟨σ′, n⟩ =⇒ ⟨σ, e⟩ →∗⟨σ′, n⟩

We proceed by structural induction on e. We have to consider each of the possible axioms
and inference rules for constructing an expression.

Case e = x: Assume that ⟨σ, x⟩ ⇓ ⟨σ′, n⟩. That is, there is some derivation in the large-step
operational semantics whose conclusion is ⟨σ, x⟩ ⇓ ⟨σ, n⟩. There is only one rule whose
conclusion matches the configuration ⟨σ, x⟩: the large-step rule VAR. Thus, we have
n = σ(x) and σ′ = σ. By the small-step rule VAR, we also have ⟨σ, x⟩ → ⟨σ, n⟩. By the
REFL and TRANS rules, we conclude that ⟨σ, x⟩ →∗⟨σ, n⟩, which finishes the case.

Case e = n: Assume that ⟨σ, n⟩ ⇓ ⟨σ′, n′⟩. There is only one rule whose conclusion matches
⟨σ, n⟩: the large-step rule INT. Thus, we have n′ = n and σ′ = σ and so ⟨σ, n⟩ →∗⟨σ, n⟩
by the REFL rule.

Case e = e1 + e2: This is an inductive case. We want to prove that if P (e1) and P (e2) hold,
then P (e) also holds. Let’s write out P (e1), P (e2), and P (e) explicitly.

P (e1) = ∀n, σ, σ′. ⟨σ, e1⟩ ⇓ ⟨σ′, n⟩ =⇒ ⟨σ, e1⟩ →∗⟨σ′, n⟩
P (e2) = ∀n, σ, σ′. ⟨σ, e2⟩ ⇓ ⟨σ′, n⟩ =⇒ ⟨σ, e2⟩ →∗⟨σ′, n⟩
P (e) = ∀n, σ, σ′. ⟨σ, e1 + e2⟩ ⇓ ⟨σ′, n⟩ =⇒ ⟨σ, e1 + e2⟩ →∗⟨σ′, n⟩

Assume that P (e1) and P (e2) hold. Also assume that there exist σ, σ′ and n such that
⟨σ, e1 + e2⟩ ⇓ ⟨σ′, n⟩. We need to show that ⟨σ, e1 + e2⟩ →∗⟨σ′, n⟩.
We assumed that ⟨σ, e1 + e2⟩ ⇓ ⟨σ′, n⟩. This means that there is some derivation whose
conclusion is ⟨σ, e1 + e2⟩ ⇓ ⟨σ′, n⟩. By inspection, we see that only one rule has a conclu-
sion of this form: the ADD rule. Thus, the last rule used in the derivation was ADD and
it must be the case that ⟨σ, e1⟩ ⇓ ⟨σ′′, n1⟩ and ⟨σ′′, e2⟩ ⇓ ⟨σ′, n2⟩ hold for some n1 and n2

with n = n1 + n2.

2



By the induction hypothesis P (e1), as ⟨σ, e1⟩ ⇓ ⟨σ′′, n1⟩, we must have ⟨σ, e1⟩ →∗⟨σ′′, n1⟩.
Likewise, by induction hypothesis P (e2), we have ⟨σ′′, e2⟩ →∗⟨σ′, n2⟩. By Lemma 1 be-
low, we have,

⟨σ, e1 + e2⟩ →∗⟨σ′′, n1 + e2⟩,

and by another application of Lemma 1 we have:

⟨σ′′, n1 + e2⟩ →∗⟨σ′, n1 +n2⟩

Then, using the small-step ADD rule and the multi-step TRANS rule, we have:

n = n1 + n2

⟨σ′, n1 +n2⟩ → ⟨σ′, n⟩
ADD

⟨σ′, n⟩ →∗⟨σ′, n⟩
REFL

⟨σ′, n1 + n2⟩ →∗⟨σ′, n⟩
TRANS

Finally, by two applications of Lemma 2, we obtain ⟨σ, e1 + e2⟩ →∗⟨σ′, n⟩, which finishes
the case.

Case e = e1 * e2. Similar to case for e1 + e2 above.
Case e = x := e1; e2. Omitted. Try it as an exercise.

⇐=: We proceed by induction on the derivation of ⟨σ, e⟩ →∗⟨σ′, n⟩ with a case analysis on the last
rule used.

Case REFL: Then e = n and σ′ = σ. We immediately have ⟨σ, n⟩ ⇓ ⟨σ, n⟩ by the large-step
rule INT.

Case TRANS: Then ⟨σ, e⟩ → ⟨σ′′, e′′⟩ and ⟨σ′′, e′′⟩ → ∗⟨σ′, n⟩. In this case, the induction
hypothesis gives ⟨σ′′, e′′⟩ ⇓ ⟨σ′, n⟩. The result follows from Lemma 3 below.

Lemma 1. If ⟨σ, e⟩ →∗⟨σ′, n⟩, then the following hold:

• ⟨σ, e + e2⟩ →∗⟨σ′, n + e2⟩
• ⟨σ, e * e2⟩ →∗⟨σ′, n * e2⟩
• ⟨σ, n1 + e⟩ →∗⟨σ′, n1 +n⟩
• ⟨σ, n1 * e⟩ →∗⟨σ′, n1 *n⟩
• ⟨σ, x := e ; e2⟩ →∗⟨σ′, x :=n ; e2⟩

Proof. Omitted; try it as an exercise.

Lemma 2. If ⟨σ, e⟩ →∗⟨σ′, e′⟩ and ⟨σ′, e′⟩ →∗⟨σ′′, e′′⟩, then ⟨σ, e⟩ →∗⟨σ′′, e′′⟩.

Proof. Omitted; try it as an exercise.

Lemma 3. If ⟨σ, e⟩ → ⟨σ′′, e′′⟩ and ⟨σ′′, e′′⟩ ⇓ ⟨σ′, n⟩, then ⟨σ, e⟩ ⇓ ⟨σ′, n⟩.

Proof. Omitted; try it as an exercise.

3


