
CS3110 Spring 2016 Lecture 8:
OCaml Type Theory Continued

Topics

1. Review Lecture 7, OCaml type theory

2. Look at typing rules and type checking

3. Defining the void type and propositional logic

4. Look closer at logic, we already have &, ∨, ⇒ ∀

5. The challenge of dependent types

{x : α|β(x)}
∃x : α.β(x)

Specifications with dependent types:

– GCD

• We started the course with the computational type system. That re-
quired a precise syntax and computational rules to define canonical and
noncanonical values.

We gave a precise semantics for a small subset of the OCaml language
based on step-by-step reductions for several expressions. There are
many rules and no complete account outside of the compiler.

We explained the OCaml type system for these values. It is “very rich,”
and we estimated there would be over 200 rules. Today we will look at
the format of these rules and give examples.

We ended with the comparison to the number of rules to explain modern
mathematics:

1

– First-Order Logic and ZFC set theory (10 axioms)

– &, ∨, ⇒, ∼, ∀, ∃ (6 ∗ 2 = 12 axioms)

What explains this?

• We’ll examine some typing rules and look at type inference.

The folk wisdom about OCaml is “if it type checks it works!”

Can the types provide an adequate precise description of programming
tasks?

OCaml, Haskell, F#, etc. Almost.

The type systems of the proof assistants Agda, Coq, and Nuprl can
define precisely most (if not all current) programming tasks as well as
most modern mathematics.

How close is the OCaml type theory to the theory used by these proof
assistants – called “constructive or computational type theory?”

Closer than most people think! Just missing bits of logic that come
from dependent types.

2

Summary of the OCaml (Functional) Type System

Atomic Types

1. unit 5. string
2. bool 6. float
3. int 7. exn
4. char 8. Big int

The exception type, exn, is discussed on page 129. We want to include
Big int in the standard theory since they are essential to mathematics.

Type Constructors

9. ∗ product type, e.g. bool ∗ int. The elements are pairs, and repeated
pairing gives tuples, float ∗ float ∗ float.

10. → function space e.g. bool → int. Elements can be anonymous func-
tions such as fun x→ exp, e.g. fun x→ x.

11. options (also called variants, p.103), e.g. Lα||Rβ.

12. lists, e.g. α-list, elements [e1; e2; ...; en], p.11, Chapter 3.

13. {id1 : ty1; id2 : ty2 ; ...; idn : tyn}, records, Ch. 5, p.87.

14. <id1 : ty1; id2 : ty2 ; ...; idn : tyn>, objects, p.212.

15. [> ′id1 : val1;
′id2 : val2; ...;

′idn : valn], polymorphic variants (we
won’t use these in lecture).

16. ’a ty = | case 1 of ty

| case 2 of ty

...

| case n of ty

recursive type, p.111

17. module type T = sig ... end

module signature (i.e. type), Ch. 4

18. module Name (M:ty_in) : ty_out = structure CODE end

functors, p.176.

19. monitors, Ch. 18

3

Type Inference Examples

Type of fun x -> x * x?

Type of fun x -> hd x?

Type of ((fun x -> x * x) -1, -1 < 0)?

Type of tl [3;5;7;11]?

Type of

majors = | CS | ECE | Math | Hist

major_to_start = function

| CS -> 100

| ECE -> 90

| Math -> 200

| Hist -> 50;;

See Real World OCaml p.103-105.

Note union or disjoint union is another name for the following type:
N1 of ty1 | N2 of ty2 | N3 of ty3

Consider these two expressions:

{item : ’a; time : float}.item

{item : ’a; time : float}.time

What do they mean? See page 88 of the book.

Sample Typing Rules

f ∈ α→ β, a ∈ α ` f a ∈ β

p ∈ α ∗ β ` fst p ∈ α
p ∈ α ∗ β ` snd p ∈ β

exp1 && exp2 = true ` exp1 ∈ bool
` exp2 ∈ bool

3

` {item : ′a; time : float}.item ∈ ′a

` {item : ′a; time : float}.time ∈ float

` ∈ α list, ` 6= [] ` hd ` ∈ α
` ∈ α list, ` 6= [] ` tl ` ∈ α

Expressing Logic with Types

Logic is a preferred way to specify tasks.

α ∗ β as α& β
α→ β as α⇒ β
Lα||Rβ as α ∨ β

{none : α.α} as False (or V oid)
α→ void as ∼ α

x : type→ P (x) as ∀x : type.P (x)

The harder bit is ∃x : ty.P (x). We will discuss whether this can be done
using a first class module in the next lecture. We would like to apply this
idea to Euclid’s GCD Theorem.

GCD Theorem in Type Theory

∀n,m : N.∃g : N.GCD(m;n; g)

GCD(m;n;g) = (g|m) ∧ (g|n) ∧ (∀z:Z.(((z|m) ∧ (z|n)) ⇒ (z|g)))

For a detailed account of this theorem and the algorithm and implemen-
tation in the Nuprl proof solver see www.nuprl.org/MathLibrary/gcd/.

4

These are examples of how to define the void type and the logical operators
using modules.

module type Prop = sig type t end;;

module type Prop = sig type t end

module IMP = functor(A : Prop) -> functor(B : Prop) -> struct

type t = A.t -> B.t end;;

module IMP:

functor(A : Prop) -> functor(B : Prop) -> sig type t = A.t -> B.t

end

type void = {none : ’a.’a};;

type void = {none : ’a.’a;}

module Void = struct type t = void end;;

module Void : sig type t = void end

type record_void = {field : record_void};;

type record_void = {field : record_void;}

module NOT (A:Prop) = IMP (A) (Void);;

module NOT : functor(A : Prop) -> sig type t = A.t -> Void.t end

module OR = functor(A:Prop) -> functor(B: Prop) -> struct

type t = L of A.t | R of B.t end;;

module OR:

functor(A : Prop) ->

functor(B : Prop) -> sig type t = L of A.t | R of B.t

end

5

	lecture8_3110
	lecture8_3110a
	lecture8_3110
	lecture8_3110a

