
CS3110 Spring 2016 Lecture 7: OCaml

Type Theory

Summary of OCaml Types

We will list the atomic types and the type constructors for the purely func-
tional core of the OCaml Type Theory. This includes eight atomic types
and eleven type constructors plus the void type for a total of 20 types. For
each type there are several rules, some about typing the canonical values
and some about typing the operators on these values.

The number of rules varies from two to perhaps 20, so this is by no means
a small theory. It expresses precisely many concepts from CS, mathematics,
science, and engineering.

If we compare the “weight” of this theory to that of the standard theories
of mathematics, it is revealing. The minimal foundation of 20th century
mathematics can be given with ten logical rules and and ten set theory rules
(for ZFC). The OCaml Type Theory will have over 200 rules. What is going
on?

We have now used the OCaml programming language enough to appre-
ciate that it is not only a useful and expressive programming language, but
it is based on a rich implemented theory of types. This theory includes rules
for evaluating expressions that we have studied, the small step operational
semantics.

In this week’s lectures we will present the elements of the OCaml type
theory. The type theory is governed by rules for defining types and for typing
syntactically correct meaningful expressions of the language. Explaining the
type theory anticipates the direction in which a course like this one will be
taught when it is supported by a proof assistant. This is a direction in which
the US will invest, following examples explored widely in the European
Union.
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First we focus on examples of typing rules for List Theory, a subset
of the broader type theory. We will see a pattern to the rules. Then we
will enumerate the OCaml types and estimate the formal content of the
theory based on the number of typing rules and their interaction with the
computation rules.

In Lecture 8 we will see that OCaml can express a significant number of
logical propositions as types and provide precise rules for logical reasoning
in the type theory.

To grasp how the type theory rules work, we look at some of the rules
for lists. Recall that we examined the form of the “one-step” computation
rules previously. (Real World OCaml, Ch. 1 & 3.)

Consider polymorphic lists, ′a list. We also write them in lecture using
Greek letters, α-list. These lists are representative of the unbounded variety
of typed lists such as int list, bool list, unit list, char list, etc.

Using variants we also have hybrids such as

(Int of int ||Flt of float) list

A canonical list is usually given as [e1; e2; ...; en], where ei are elements
of the right type.

The canonical empty list is [ ].

A non-empty list is built using the “cons” operator. e :: `.

The list e1 :: (e2 :: (e3 :: [ ])) is displayed [e1; e2; e3].

The list operators include these primitives:

cons is ::
head is hd hd a :: [ ] ↓ a
tail is tl tl a :: [ ] ↓ [ ]
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Summary of the OCaml (Functional) Type System

Atomic Types

1. unit 5. string
2. bool 6. float
3. int 7. exn
4. char 8. Big int

The exception type, exn, is discussed on page 129. We want to include
Big int in the standard theory since they are essential to mathematics.

Type Constructors

9. ∗ product type, e.g. bool ∗ int. The elements are pairs, and repeated
pairing gives tuples, float ∗ float ∗ float.

10. → function space e.g. bool → int. Elements can be anonymous func-
tions such as fun x→ exp, e.g. fun x→ x.

11. options (also called variants, p.103), e.g. Lα||Rβ.

12. lists, e.g. α-list, elements [e1; e2; ...; en], p.11, Chapter 3.

13. {id1 : ty1; id2 : ty2 ; ...; idn : tyn}, records, Ch. 5, p.87.

14. <id1 : ty1; id2 : ty2 ; ...; idn : tyn>, objects, p.212.

15. [> ′id1 : val1;
′id2 : val2; ...;

′idn : valn], polymorphic variants (we
won’t use these in lecture).

16. ’a ty = | case 1 of ty

| case 2 of ty

...

| case n of ty

recursive type, p.111

17. module type T = sig ... end

module signature (i.e. type), Ch. 4

18. module Name (M:ty_in) : ty_out = structure CODE end

functors, p.176.

19. monitors, Ch. 18

3


