
CS3110 Spring 2016 Lecture 6: Modules

Modules are the O part of OCaml, influenced by objects in Java. We see
the evolution: Classic ML, CambridgeML (CAML), and finally OCaml.
David McQueen is writing the history of this evolution.

Motivations

1. Managing specifications and code for large projects, local recoding
does not impact other “modules”, can discuss the system structure
and design.

2. Enriching the type system with module signatures and functors.
Module structures are a new kind of object, like a tuple. The type
theories of proof assistants are richer and motivate PL extensions.
We will look briefly at the way rich type systems handle these
concepts.

3. Connections to the area of Mathematical Knowledge Management
(MKM) as conducted by modern proof assistants and theorem
provers. The MKM efforts introduce a classification of mathematical
topics.

We see this in our refernce to the ring of integers and the field of
rationals and the field of reals.

nat – for Natural numbers

int – extends nat, provides structure of a ring.

rat – extends int, provides structure of a field

reals – extends rat and provides a field

complex – extends reals and provides a field

Types corresponding to propositional logic:

1

• Logical types:

α ∗ β for & (and)

α→ β for implies

Lα||Rβ for or

• α ∗ β ⇒ α is a valid logical principle, so are:

α⇒ Lα||Rβ
α ∗ β ⇒ β ∗ α, etc.

There are two aspects to modules:

• The type part, called the signature.

module type Name = sig......end

↖ defintions

• The value part, called the structure.

module type modname = struct......end

↖ implementation

Example from PS2:

module type N = sig

type t

val zero : t

val succ : t -> t

val eq : t -> t -> bool

end

The centerpiece of PS2 is a module for the rational numbers, Q.

module type Q = sig defs end

We have provided the signature, your job is to build the structure,
called Rational.

2

Functional stacks and queues, dictionaries, fractions

Functional data structures

In this recitation, we look at examples of structures and signatures that implement data

structures. We show that stacks and queues can be implemented efficiently in a functional

style.

What is a functional stack, or a functional queue? It is a data structure for which the

operations do not change the data structure, but rather create a new data structure, with the

appropriate modifications, instead of changing it in-place. In imperative languages, data

operations generally support destructive update — “destructive” in the sense that after the

update is done, the original data structure is gone. Functional abstractions

supportnondestructive updates: the original value is still around, unmodified, so code that was

using it is unaffected. For efficiency, it is important to implement nondestructive updates not by

creating an entirely new data structure, but by sharing as much as possible with the original

data structure.

Stacks

Recall a stack: a last-in first-out (LIFO) queue. Just like lists, the stack operations

fundamentally do not care about the type of the values stored, so it is a naturally polymorphic

data structure.

Here is a possible signature for functional stacks:

module type STACK =

 sig

 (* A stack of elements of type 'a. We write to

 * denote a stack whose top element is a1, with successive

 * elements a2, a3,...an. *)

 type 'a stack

 exception EmptyStack

 (* The empty stack. *)

 val empty : 'a stack

 (* Whether this stack is empty. *)

 val isEmpty : 'a stack -> bool

 (* Returns a new stack with x pushed onto the top. *)

 val push : ('a * 'a stack) -> 'a stack

 (* Returns a new stack with the top element popped off. *)

 val pop : 'a stack -> 'a stack

 (* The top element of the stack. *)

 val top : 'a stack -> 'a

 (* map(f) maps one stack into a corresponding stack, using f. *)

 val map : ('a -> 'b) -> 'a stack -> 'b stack

 (* app(f) applies f to every element of the stack, top to bottom. *)

 val app : ('a -> unit) -> 'a stack -> unit

 end

This signature specifies a parameterized abstract type for stack. Notice the type variable'a.

The signature also specifies the empty stack value, and functions to check if a stack is empty,

and to perform push, pop and top operations on the stack. Moreover, we specify functions

map and app to walk over the values of the stack.

We also declare an exception EmptyStack to be raised by top and pop operations when

the stack is empty.

Here is the simplest implementation of stacks that matches the above signature. It is

implemented in terms of lists.

module Stack : STACK =

 struct

 type 'a stack = 'a list

 exception EmptyStack

 let empty : 'a stack = []

 let isEmpty (l : 'a stack) : bool = l = []

 let push ((x : 'a), (l : 'a stack)) : 'a stack = x :: l

 let pop (l : 'a stack) : 'a stack =

 match l with

 [] -> raise EmptyStack

 | x :: xs -> xs

 let top (l : 'a stack) : 'a =

 match l with

 [] -> raise EmptyStack

 | x :: xs -> x

 let map (f : 'a -> 'b) (l : 'a stack) : 'b stack = List.map f l

 let app (f : 'a -> unit) (l : 'a stack) : unit = List.iter f l

 end

Up until now, we have been defining exceptions solely in order to raise them and interrupt the

executing program. Just like in Java, it is also possible to catch exceptions, which is termed

'handling an exception' in OCaml.

As an example, consider the following example. In the above code, we have implemented

top and pop respectively as functions that return the first element of the list and the rest of the

list. OCaml already defines functions to do just that, namely List.hd and List.tl (for head

and tail). The function hd takes a list as argument and returns the first element of the list, or

raises the exception Failure if the list is empty. Similarly for tl. One would like to simply be

able to write in Stack:

let top (l : 'a stack) : 'a = List.hd l

let pop (l : 'a stack) : 'a stack = List.tl l

However, if passed an empty stack, top and pop should raise the EmptyStackexception.

As written above, the exception Failure would be raised. What we need to do is intercept (or

handle) the exception, and raise the right one. Here's one way to do it:

let top (l : 'a stack) : 'a =

 try List.hd l with Failure _ -> raise EmptyStack

let pop (l : 'a stack) : 'a stack =

 try List.tl l with Failure _ -> raise EmptyStack

The syntax for handling exceptions is as follows:

try e with exn -> e'

where e is the expression to evaluate, and if e raises an exception that matches exn, then

expression e' is evaluated instead. The type of e and e' must be the same.

Signatures

To successfully develop large programs, we need more than the ability to group related

operations together in a module. We need to be able to use the compiler to enforce the

separation between different modules, which prevents bad things from happening. Signatures

are the mechanism that enforces this separation.

Signature declarations that have the following syntax:

module type SIGNAME = sig definitions end

By convention, the signature name SIGNAME is all in capital letters. The definitions of a

signature declare a set of types and values that any module implementing it must provide. The

definitions of a signature may be type definitions, val definitions to define the type signature

of a name, and exception definitions to specify exceptions that module can raise.

A module that implements a particular signature specifies the name of that signature in its

definition, after the module name and separated by a : as with types. The signature must be

defined before the module is defined.

module ModuleName : SIGNAME = struct implementation end

A module that implements a signature must specify concrete types for the abstract types in

the signature and provide all the declarations in the signature. Only the abstract types are

accessible outside the module, unless the signature exposes the definition. Only declarations

in the signature are accessible outside of the module (for instance functions defined in the

implementation but not in the signature are not accessible).

For example, here is a signature for a simple set data abstraction, together with two

implementations of that interface using lists:

(* Set data abstraction with union and intersection *)

module type SET = sig

 type 'a set

 val empty : 'a set

 val mem : 'a -> 'a set -> bool

 val add : 'a -> 'a set -> 'a set

 val rem : 'a -> 'a set -> 'a set

 val size: 'a set -> int

 val union: 'a set -> 'a set -> 'a set

 val inter: 'a set -> 'a set -> 'a set

end

(* Implementation of sets as lists with duplicates *)

module Set1 : SET = struct

 type 'a set = 'a list

 let empty = []

 let mem = List.mem

 let add x l = x :: l

 let rem x = List.filter ((<>) x)

 let rec size l =

 match l with

 | [] -> 0

 | h :: t -> size t + (if mem h t then 0 else 1)

 let union l1 l2 = l1 @ l2

 let inter l1 l2 = List.filter (fun h -> mem h l2) l1

end

(* Implementation of sets as lists without duplicates *)

module Set2 : SET = struct

 type 'a set = 'a list

 let empty = []

 let mem = List.mem

 (* add checks if already a member *)

 let add x l = if mem x l then l else x :: l

 let rem x = List.filter ((<>) x)

 let size = List.length (* size is just length if no duplicates *)

 let union l1 l2 = (* check if already in other set *)

 List.fold_left (fun a x -> if mem x l2 then a else x :: a) l2 l1

 let inter l1 l2 = List.filter (fun h -> mem h l2) l1

end

http://www.cs.cornell.edu/courses/cs3110/2014sp/lectures/8/src/set.ml
http://www.cs.cornell.edu/courses/cs3110/2014sp/lectures/8/src/set.ml
http://www.cs.cornell.edu/courses/cs3110/2014sp/lectures/8/src/set.ml
http://www.cs.cornell.edu/courses/cs3110/2014sp/lectures/8/src/set.ml
http://www.cs.cornell.edu/courses/cs3110/2014sp/lectures/8/src/set.ml
http://www.cs.cornell.edu/courses/cs3110/2014sp/lectures/8/src/set.ml
http://www.cs.cornell.edu/courses/cs3110/2014sp/lectures/8/src/set.ml
http://www.cs.cornell.edu/courses/cs3110/2014sp/lectures/8/src/set.ml
http://www.cs.cornell.edu/courses/cs3110/2014sp/lectures/8/src/set.ml
http://www.cs.cornell.edu/courses/cs3110/2014sp/lectures/8/src/set.ml
http://www.cs.cornell.edu/courses/cs3110/2014sp/lectures/8/src/set.ml
http://www.cs.cornell.edu/courses/cs3110/2014sp/lectures/8/src/set.ml
http://www.cs.cornell.edu/courses/cs3110/2014sp/lectures/8/src/set.ml
http://www.cs.cornell.edu/courses/cs3110/2014sp/lectures/8/src/set.ml
http://www.cs.cornell.edu/courses/cs3110/2014sp/lectures/8/src/set.ml
http://www.cs.cornell.edu/courses/cs3110/2014sp/lectures/8/src/set.ml
http://www.cs.cornell.edu/courses/cs3110/2014sp/lectures/8/src/set.ml
http://www.cs.cornell.edu/courses/cs3110/2014sp/lectures/8/src/set.ml
http://www.cs.cornell.edu/courses/cs3110/2014sp/lectures/8/src/set.ml
http://www.cs.cornell.edu/courses/cs3110/2014sp/lectures/8/src/set.ml
http://www.cs.cornell.edu/courses/cs3110/2014sp/lectures/8/src/set.ml
http://www.cs.cornell.edu/courses/cs3110/2014sp/lectures/8/src/set.ml
http://www.cs.cornell.edu/courses/cs3110/2014sp/lectures/8/src/set.ml
http://www.cs.cornell.edu/courses/cs3110/2014sp/lectures/8/src/set.ml
http://www.cs.cornell.edu/courses/cs3110/2014sp/lectures/8/src/set.ml
http://www.cs.cornell.edu/courses/cs3110/2014sp/lectures/8/src/set.ml
http://www.cs.cornell.edu/courses/cs3110/2014sp/lectures/8/src/set.ml
http://www.cs.cornell.edu/courses/cs3110/2014sp/lectures/8/src/set.ml
http://www.cs.cornell.edu/courses/cs3110/2014sp/lectures/8/src/set.ml
http://www.cs.cornell.edu/courses/cs3110/2014sp/lectures/8/src/set.ml
http://www.cs.cornell.edu/courses/cs3110/2014sp/lectures/8/src/set.ml
http://www.cs.cornell.edu/courses/cs3110/2014sp/lectures/8/src/set.ml
http://www.cs.cornell.edu/courses/cs3110/2014sp/lectures/8/src/set.ml
http://www.cs.cornell.edu/courses/cs3110/2014sp/lectures/8/src/set.ml
http://www.cs.cornell.edu/courses/cs3110/2014sp/lectures/8/src/set.ml
http://www.cs.cornell.edu/courses/cs3110/2014sp/lectures/8/src/set.ml
http://www.cs.cornell.edu/courses/cs3110/2014sp/lectures/8/src/set.ml
http://www.cs.cornell.edu/courses/cs3110/2014sp/lectures/8/src/set.ml
http://www.cs.cornell.edu/courses/cs3110/2014sp/lectures/8/src/set.ml
http://www.cs.cornell.edu/courses/cs3110/2014sp/lectures/8/src/set.ml
http://www.cs.cornell.edu/courses/cs3110/2014sp/lectures/8/src/set.ml
http://www.cs.cornell.edu/courses/cs3110/2014sp/lectures/8/src/set.ml
http://www.cs.cornell.edu/courses/cs3110/2014sp/lectures/8/src/set.ml

Queues

Let us write an example more interesting than stacks. After all, from the above, one can see

that they are just lists. Consider the queue data structure, a first-in first-out data structure.

Again, we consider functional queues. Here is a possible signature:

module type QUEUE =

 sig

 type 'a queue

 exception EmptyQueue

 val empty : 'a queue

 val isEmpty : 'a queue -> bool

 val enqueue : ('a * 'a queue) -> 'a queue

 val dequeue : 'a queue -> 'a queue

 val front : 'a queue -> 'a

 val map : ('a -> 'b) -> 'a queue -> 'b queue

 val app : ('a -> unit) -> 'a queue -> unit

 end

The simplest possible implementation for queues is to represent a queue via two stacks:

one stack A on which to enqueue elements, and one stack B from which to dequeue

elements. When dequeuing, if stack B is empty, then we reverse stack A and consider it the

new stack B.

Here is an implementation for such queues. It uses the stack structure Stack, which is

rebound to the name S inside the structure to avoid long identifier names.

module Queue : QUEUE =

 struct

 module S = Stack

 type 'a queue = ('a S.stack * 'a S.stack)

 exception EmptyQueue

 let empty : 'a queue = (S.empty, S.empty)

 let isEmpty ((s1, s2) : 'a queue) =

 S.isEmpty s1 && S.isEmpty s2

 let enqueue ((x : 'a), ((s1, s2) : 'a queue)) : 'a queue =

 (S.push (x, s1), s2)

 let rev (s : 'a S.stack) : 'a S.stack =

 let rec loop ((prev : 'a S.stack), (curr : 'a S.stack))

 : 'a S.stack =

 if S.isEmpty prev

 then curr

 else loop (S.pop prev, S.push (S.top prev, curr))

 in

 loop (s, S.empty)

 let dequeue ((s1, s2) : 'a queue) : 'a queue =

 if S.isEmpty s2

 then try (S.empty, S.pop (rev s1))

 with S.EmptyStack -> raise EmptyQueue

 else (s1, S.pop s2)

 let front ((s1, s2) : 'a queue) : 'a =

 if (S.isEmpty s2)

 then try S.top (rev s1)

 with S.EmptyStack -> raise EmptyQueue

 else S.top s2

 let map (f : 'a -> 'b) ((s1, s2) : 'a queue) : 'b queue =

 (S.map f s1, S.map f s2)

 let app (f : 'a -> unit) ((s1, s2) : 'a queue) : unit =

 S.app f s2;

 S.app f (rev s1)

 end

We learned about folding last week. In the above implementation, the stack reversal could

have been done using fold. However, since the Stack module does not specify a fold

operation, and the implementation of the Stack as a list is hidden from the Queue module, we

need something more. The Stack signature should specify a fold operation that will help its

users to iterate over its elements.

	lect6_3110
	lect6_3110
	lecture6_3110
	lec6resource

	Functors

	aaa

