
CS3110 Spring 2016 Lecture 5 Modules

for Rational Numbers

Mark Bickford and R. Constable

Abstract

This lecture begins our discussion of modules in OCaml and module
interfaces. These language constructs allow us to collect definitions
of types and related functions into one syntactic object called a mod-
ule. The textbook discusses modules at length as do previous lecture
notes. These notes for Lecture 5 will not stress the connection to files
and compilation. Instead they present modules as a way to organize
a related group of types and functions and apply them to defining the
abstract type of rational numbers.

We will use modules to organize our implementation of rational num-
bers and later introduce another module to implement the compu-
tational real numbers. Modules provide the basis for abstract types.
In Classic ML, the original ML programming language from which
OCaml evolved, there were no modules, and the ideas discussed here
were presented only in terms of abstract data types. We briefly mention
the reason that Classic ML created these types. They are relevant to
the theme of problem specification and correct programming that we
have already discussed as motivation for many concepts taught in this
course. OCaml was built in large part to support these ideas.

1 Lecture Topics

1. History of ML: Classic ML, Standard ML (SML), and OCaml

2. LCF - logic of computable functions

3. ML - meta-language for LCF

• programming proofs for LCF

• guarantee that proofs use only the rules of LCF

1

4. Type system for ML

5. Module for rational numbers

6. Normalizing rational numbers using the gcd algorithm

Top down proof style

In the 1970’s computer scientists were exploring how to make
programming much more reliable. Several of the most cited and honored
research was devoted to this area. Two British computer scientists, C.A.R.
Hoare (now Sir Hoare) and Robin Milner were leaders in these efforts as
was the Stanford computer scientist John McCarthy (the creator of Lisp)
and Dana Scott who had moved to Oxford University. There are many
other very eminent researchers in this area that are not mentioned in this
lecture. We will mention others as the course progresses. Robin Milner was
visiting Stanford and designing a functional programming with features
that supported reasoning about programs. He and his colleagues were
implementing a logic for reasoning about computable functions based on
ideas proposed by Dana Scott [10]. In the 1970’s Robin moved to
Edinburgh University in Scotland and continued developing his approach.
It was called Edinburgh LCF [4] because Milner and his team built the
system at the University of Edinburgh in Scotland. It became a very
influential system.1

http://amturing.acm.org/award_winners/milner_1569367.cfm

Edinburgh LCF provided a functional programming language for
implementing the LCF logic and writing formal proofs in it. This
functional language is often called Classical ML, the letters ML abbreviate
Meta-Language, a central concept in logic. The ML type system includes
types for logical formulas and a precise definition of formal proofs. ML
implemented the concept of an abstract type to enforce that proofs can be
built only using the formal rules of the logic as expressed in ML. There is
no other way for normal users to create a proof than to build it in the
abstract type of LCF proofs. Every such object will be a legal proof. The
Classical ML type system makes precise the concept of an LCF proof. This

1Robin and the second author on these notes became close friends and colleagues, so I
can tell stories about his personal role in computer science. He won the Turing Award for
this and other fundamental contributions – see the url. He was advising the two authors of
these notes on our logic of events when he died in 2010 and the CS community mourned.

2

implementation of proofs can be shown faithful to the notion of proof as
defined by logicians studying the foundations of mathematics, such as
Hilbert, Gödel , Church, and Turing among others.

The Edinburgh LCF approach is very general and is now used by other
projects to implement more expressive logics and support the creation of
formal proofs in them. Systems that support the creation of formal proofs
are called proof assistants, and they have been built for various logics.
Edinburgh LCF was one of the first; Cambridge LCF followed, creating the
HOL proof assistant [8, 9, 7]. The Nuprl proof assistant for type theory
uses Classic ML [2]. The Coq proof assistant [3, 6, 1] uses a related
metalanguage and is implemented in OCaml as is the Meta-PRL [5] proof
assistant.

Here is a diagram that shows the structure of a proof as a tree of objects
called sequents.2 The only way to build a proof tree is by applying the
constructors for the abstract Classical ML type of LCF proofs.

` for all L : t list A(L) and B(L)
|

L : t list ` A(L) and B(L)
/ \

L : t list ` A(L) L : t list ` B(L)

/ \ . . .

` A([]) L : t list A(L), x : t ` A(x.L)
...

...

The value of an abstract type is especially clear in the case of proofs. The
LCF designers required a mechanism to ensure that that only logically
correct methods could be used to build formal proofs. They reduced that
idea to applying the constructors of the abstract type of LCF proofs. The
Classic ML programming language was designed to write programs called
tactics that are safe programming tools for building formal proofs. Nuprl
tactics are Classic ML programs that build proof objects in the ML
abstract type of Nuprl proofs.

2These trees are frequently drawn top down, with the root at the top and leaves at the
bottom.

3

Algebraic properties of rational numbers

We now apply the notion of an abstract type to define the type of rational
numbers and the basic functions to compute with them. We want to
confirm that the implementation is correct by showing that the standard
arithmetic laws apply. These can be expressed as equalities on the
primitive operators, as we list below.

x, y, z: rational.

Commutative x + y = y + x x ∗ y = y ∗ x
Associative (x + y) + z = x + (y + z) (x ∗ y) ∗ z = x ∗ (y ∗ z)

Identity x + 0 = x x ∗ 1 = x
Distributive (x + y) ∗ z = x ∗ z + y ∗ z

Inverse x + (−x) = 0 x ∗ 1
x = 1 if x 6= 0

<rational, +, ∗, -, 1
x , 0, 1> is a “field”.

Abstract ‘Interface’

We now examine how to create a module that uses an interface, denoted
mli, to provide the abstract signature that defines the module of rational
numbers. These ideas are discussed and illustrated in Chapter 4 of Real
World OCaml. The textbook explains the notion of signatures and
abstract types. It also notes that in the context of OCaml, “the terms
interface, signature, and module type are all used interchangeably.” Here is
the OCaml abstract type for rational numbers, rat.mli, defined using a
module with an interface (indicated by mli).

rat.mli (You should really use big int instead of int.)
type rat

val rat0 : rat

val rat1 : rat

val add_rat : rat -> rat -> rat

val mul_rat : rat -> rat-> rat

val inv_rat : rat -> rat

val aminus_rat: rat -> rat

val mk_rat : (int * int) -> rat

rat.ml

4

type rat = int * int

let mk_rat(a,b) =

if b = 0 then failwith "mk_rat: 0 denominator"

else (a,b)

let rat0 = (0,1)

let rat1 = (1,1)

GCD algorithm

We want to present rational numbers in a canonical form that removes the
common factors in the numerator and denominator. We do this by
“dividing out” the greatest common divisor.

See ‘An Algorithm for the Greatest Common Divisor’ by Anne Trostle on
the Nuprl website for a more detailed explanation, and the implementation
in Nuprl.

http://www.nuprl.org/MathLibrary/gcd/

1

b
+

c

d
=

ad

bd
+

bc

bd
=

ad + bc

bd

(
1

2
) + (

1

2
) =

1 ∗ 2 + 2 ∗ 1

2 ∗ 2
=

4

4

We want to put a
b in lowest terms.

let reduce_rat(a,b) =

let g = gcd a b in

(a/g, b/g)

let rec gcd a b =

if b = 0 then a

else gcd b (a mod) b

5

Example of the gcd algorithm:

gcd 70 18 70 = 3 ∗ 18 + 16 70 = 7 ∗ 5 ∗ 2
gcd 18 16 18 = 1 ∗ 16 + 2 18 = 3 ∗ 3 ∗ 2
gcd 16 2 16 = 8 ∗ 2 + 0
gcd 2 0
2

g = gcd a b is the greatest common divsor of a, b.

g = gcd a b⇒ for some u, v: g = ua + vb.

Prove this by induction on |b|.

if |b| = 0

then b = 0

g = gcd a 0 = a

We need a = ∗ a + ∗ 0, (1,0) solves this.

if |b| > 0

then b != 0

g = gcd a b = gcd b (a mod b)

1. a = qb + (a mod b), when q = a÷ b.

|a mod b| < |b|
So for some u, v:

2. g = ub + v ∗ (a mod b)

va = vqb + v ∗ (a mod b)

3. g − va = ub− vqb

(u− vq)b

g = va + (u− vq)b

6

References

[1] Yves Bertot and Pierre Castéran. Interactive Theorem Proving and
Program Development; Coq’Art: The Calculus of Inductive
Constructions. Texts in Theoretical Computer Science.
Springer-Verlag, 2004.

[2] Robert L. Constable, Stuart F. Allen, H. M. Bromley, W. R.
Cleaveland, J. F. Cremer, R. W. Harper, Douglas J. Howe, T. B.
Knoblock, N. P. Mendler, P. Panangaden, James T. Sasaki, and
Scott F. Smith. Implementing Mathematics with the Nuprl Proof
Development System. Prentice-Hall, NJ, 1986.

[3] Thierry Coquand and G. Huet. The calculus of constructions.
Information and Computation, 76:95–120, 1988.

[4] Michael Gordon, Robin Milner, and Christopher Wadsworth.
Edinburgh LCF: a mechanized logic of computation, volume 78 of
Lecture Notes in Computer Science. Springer-Verlag, NY, 1979.

[5] Jason Hickey, Aleksey Nogin, Robert L. Constable, Brian E. Aydemir,
Eli Barzilay, Yegor Bryukhov, Richard Eaton, Adam Granicz, Alexei
Kopylov, Christoph Kreitz, Vladimir N. Krupski, Lori Lorigo,
Stephan Schmitt, Carl Witty, and Xin Yu. MetaPRL — A modular
logical environment. In David Basin and Burkhart Wolff, editors,
Proceedings of the 16th International Conference on Theorem Proving
in Higher Order Logics (TPHOLs 2003), volume 2758 of Lecture
Notes in Computer Science, pages 287–303. Springer-Verlag, 2003.

[6] Gérard Huet, Gilles Kahn, and Christine Paulin-Mohring. The Coq
proof assistant : A tutorial : Version 6.1. Technical report,
INRIA-Rocquencourt, CNRS and ENS Lyon, August 1997.

[7] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel.
Isabelle/HOL — A Proof Assistant for Higher-Order Logic, volume
2283 of Lecture Notes in Computer Science. Springer, 2002.

[8] L. Paulson. Logic and Computation: Interactive Proof with Cambridge
LCF. Cambridge University Press, NY, 1987.

[9] L. C. Paulson. Standard ML for the Working Programmer.
Cambridge University Press, 1991.

7

[10] D. Scott. Outline of a mathematical theory of computation. In
Proceedings 4th Annual Princeton Conference on Information
Sciences & Systems, pages 169–176, Princeton, NJ, 1970.

8

