
CS3110 Spring 2016 Lecture 4: OCaml

Type System Continued – Partial types

Robert Constable

1 Lecture Plan

1. Response to Piazza questions and comments.

2. Schedule of problem sets (6 of them) and prelim.

3. Enrichment topics (“beyond what Google knows”), e.g. partial types
tie to computability theory and mathematics (sets versus types).

4. What is a type? (sets vs types) more enrichment.

5. Thoughts about problem set 1:

• Defining the rational numbers (the issue is n/0 and using the
gcd algorithm)

• PS2 will look at using modules for rationals Q and extending to
reals R in PS3.

• The gcd algorithm allows removing common factors in
numerator and denominator.

6. Bits of logic among the OCaml types, polymorphic types:

α&β α⇒ β α ∨ β False ? True ?

2 Piazza questions and comments

What resources do we have for learning OCaml?

• Textbook: Real World OCaml (we use about 1/2)

Please read all of Chapter 1 (‘assigned’ before), Chapter 2 (will be
used in Lecture 5), and Chapter 3 (List basics) in Lecture 6..

1

• See past CS3110 lecture notes, Nate Foster builds on Dexter Kozen.

• Other resources listed on course site, e.g. we already used small step
semantics and posted a resource.

• Canonical values under evaluation – discussed in Lectures 2 and 3.

The key point is that they are defined by eager evaluation, the pair
(2∗3, 5/5) is not canonical, reduces to (6,1), likewise [2∗3; 5/5; 0∗7].

What does [fun x→ x; fun x→ 1] show when evaluated?

3 Schedule of problem sets and in-class prelim

Date for Due Date

PS2 Out on Wed. Feb. 17 March 3
PS3 Out on Fri. March 4 March 24
Prelim Thur. March 17, in class
PS4 Out on Thur. March 24 April 8
PS5 Out on Fri. April 8 April 28
PS6 Out on Thur. April 28 May 11 (last day of classes)

4 Enrichment topics (“Beyond what Google
knows”)

The lectures also discuss ideas that are not directly related to how to use
OCaml. We have made comparisons between OCaml and other languages
such as Lisp and Haskell. These comparisons show you the wider context
of functional programming and where important languages such as Haskell
and Lisp differ from OCaml. We have mentioned the proof assistant Coq
which is used to write specifications of programming tasks and to show
that OCaml programs satisfy these specifications. The Coq proof assistant
uses OCaml as its programming language.

In due course we will talk more generally about what types are. We
already mentioned that types in OCaml are actually partial types in the
sense that OCaml allows some expressions that may not terminate to be
members of essentially all of its types. Thus the type of integers, int
includes not only integers, but also expressions that “would be integers” if
they terminated, but we do not yet know whether or not they terminate.

2

The topic of partial types is important to a thorough understanding of
modern programming and to the notion of correctness. We will discuss
several topics in this category to give you a better idea of the directions in
which programming languages are evolving and in which our
understanding of computation is deepening. So it will be important for
this course to know why int is a partial type. Suppose we have the
boolean valued functions gr to test whether an integer is greater than 0
and le to test whether less than 0.

let rec loop n:int :int if x = 0 then 0

else if gr(x) then loop(x+1) else loop(n-1).

We say that this diverges on any non-zero input. So while
loop(0),loop(1) both have type int, only one expression is actually an
integer, namely 0. The other expression does not converge to an integer.
We say it diverges.

We sometimes write ⊥ for a generic expression that has no canonical value
because it “diverges,” i.e. its computation does not terminate. We can
even find ⊥ in bool and unit! Why?

5 What is a type?

For computer science, types are a fundamental concept, analogous to the
concept of sets in mathematics, but different in very important ways that
you need to understand. It is important that in this course you know the
difference between sets and types. You are probably much more familiar
with sets because they are used in mathematics right from the start. There
are two ways that sets are discussed: intuitive and axiomatic.

Intuitive (informal): the empty set is a set and any collection of sets with
no repetitions is a set, e.g

{∅}, {{∅}, {∅, {∅}},}

.

Axiomatic: Zermelo-Fraenkel with Choice (ZFC)

A0. there is a set A5. union
A1. equality A6. replacement
A2. foundation A7. infinity
A3. comprehension {x :A|P (x)} A8. power set
A4. pairing A9. choice

3

Plus the axioms of First-Order Logic (&, ∨, ⇒, ∼, ∀, ∃), a dozen rules
plus 10 axioms.

Compare to OCaml type theory:

unit, int, bool, char, string, exn
α ∗ β α→ β Lα || Rβ
records, variants
lists, recursive types
asyn-package
(refs)

45 or so rules plus computation rules.

Types are based on a computation system defined on untyped expressions.
OCaml uses small step evaluation semantics.

Types are a collection of canonical values from the computation system
with a notion of equality on them. As canonical values, the expressions
simply stand on their own. The meaning of the expressions arises from
relating the canonical and non-canonical values. For example, consider the
list [1;2;3]. The relationship between the constructors and the
destructors starts to reveal their “meaning.” For example, if we say
hd [1;2;3] = 1 then we see the meaning of the hd operation. We start to
“understand” what a list is by applying operations to build them and
others to take them apart. We can see this relationship at the top level of
the evaluator, but how do we express it in the language of the OCaml type
theory itself? We use equations. We will see that types can be understood
as partial equivalence relations on expressions. From this definition, we
already see that before we can understand an OCaml type, we need to
know the computation rules relevant to it. That is why we started by
discussing evaluation and canonical values. Without those ideas, we
cannot understand types in computer science. In contrast, to understand
sets in mathematics, we never need to mention computation.

4

