
CS3110 Spring 2016 Lecture 3: The

OCaml Type System

1 Lecture Plan

1. Review of evaluation rules

2. Comments on lazy versus eager evaluation

3. Expressing truths in the evaluation system

4. Types: their value and meaning

5. OCaml type theory

2 Review of evaluation rules

There is no complete operational semantics of OCaml that I know about,
either big step or small step. But the account we studied in Lecture 2 is
quite informative and manageable. We will take this to be a resource for
the course:

http://www.cs.cornell.edu/courses/cs3110/2015fa/l/13-semantics/core-ocaml.html

2.1 An operational small step semantics for an OCaml
subset

One point that we need to make clear is that expressions in tuples and lists
are reduced to their canonical values. So we never have a pair of integers
in the form (2× 3, f(5)) for some defined function f . Instead, the
expressions are reduced to canonical form in the pair. If f(5) = 17, then
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the canonical form of the pair is (6, 17). The same principle applies to
expressions for values stored in a list, they are reduced to canonical values.

In the case of functions as values in a pair or a list, we do not see the
canonical form of the functions, e.g. we would not see

[fun x→ 2, fun y → y × y]

in the list value. Instead we see [< fun1 >,< fun2 >].

# fst ((fun x - > 2*2), 2*2) ;;

> ’a -> int = <fun>

# snd ((fun x -> 2*2), 2*2) ;;

> int = 4

This is because the functions are compiled to machine code for fast
execution, and the original expressions are not saved with the data type.
In languages with lazy evaluation, the values are stored as unevaluated
expressions. We will see later in the course how we can mimic lazy
evaluation using expressions called thunks. These are expressions from the
unit type into the value. To recover the value, we need to apply the
function to the element of the unit type, ().

The needs of the compiler and the runtime system sometimes “trump” the
mathematical semantics, so we end up seeing some puzzling replies as
illustrated in this short session.

# (fun x -> x) == (fun y -> y) ;;

- : bool = false

# (fun x -> x) == (fun x -> x) ;;

- : bool = false

# fst (fun x -> x, 2*2) ;;

Characters 4-21:

fst (fun x -> x, 2*2) ;;

^^^^^^^^^^^^^^^^^

Error: This expression should not be a function, the expected type is

’a * ’b

2



# fst ((fun x -> 2*2), 2*2) ;;

- : ’_a -> int = <fun>

# snd ((fun x -> 2*2), 2*2) ;;

- : int = 4

#

===============================

# (fun x -> 2*3*x) ;;

- : int -> int = <fun>

# List.hd [(fun x -> 2*3*x); (fun x -> 2*3)] ;;

- : int -> int = <fun>

# [(fun x -> 2*3*x); (fun x -> 2*3)] ;;

- : (int -> int) list = [<fun>; <fun>]

# ((fun x -> 2*3*x), (fun x -> 2*3) ) ;;

- : (int -> int) * (’a -> int) = (<fun>, <fun>)

#

=======================

# fst ((fun x -> x), 2*2) ;;

- : ’_a -> ’_a = <fun>

# fst ((fun x -> x/x), 2*2) ;;

- : int -> int = <fun>

# [(fun x -> x/x); (fun y -> 2*3)] ;;

- : (int -> int) list = [<fun>; <fun>]

# List.hd [(fun x -> x/x); (fun y -> 2*3)] ;;

- : int -> int = <fun>

# List.hd [(fun x -> x/x); (fun y -> 2*3)] 4 ;;

- : int = 1

2.2 Expressing truths with the operational semantics

3 OCaml Types

The on-line textbook for the course, Real World OCaml provides a very
readable account of the basic types in Chapter 1, A Guided Tour. It is
recommended reading for this lecture. Chapter 3 on Lists and Patterns is
also recommended and need for the first problem set. Also Chapter 6 on
Variants covers well one of the novel types of OCaml and the signature
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feature of matching on variants. The same matching style is used for lists.

https://realworldocaml.org/v1/en/html/a-guided-tour.html

OCaml and the whole ML family of languages, Classic ML [3], Standard
ML of New Jersey (SML) [4, 9, 10, 5], and OCaml [11, 6, 7, 8] provide rich
type systems. This distinguishes them from the Lisp and Scheme families
of programming languages which do not support a rich type system. These
type systems are not rich enough to support the full range of mathematics
as is the type system of the Coq proof assistant [1, 2] whose programming
language is basically OCaml. A main extension provided by Coq is the use
of dependent types and the encoding of logical operators, including
quantifiers, into these types. We will explore these types later in the
course. In addition, Coq requires that functions are total, i.e. they halt on
all inputs. OCaml functions are partial computable functions, meaning
that on some inputs the computation might fail to terminate. Types are
called partial when they permit elements whose evaluation might fail to
terminate. That is, for partial types, some expressions that the type
checker allows in the type might diverge (fail to terminate) when we
attempt to evaluate them.

Atomic types The OCaml atomic types include: bool, int, float, char,
string. We look first at the integers, int, which is one of the most basic
types for mathematics.

In mathematics we are accustomed to thinking about sets of numbers, such
as the set of natural numbers, say 0, 1, 2, .. and the set of integers
0, 1,−1, 2,−2, 3,−3, .... What is the difference between the set of integers
and the type of integers? The key difference is that the type comes with
computation rules, and sets do not. Indeed, in a set theory course or even
a calculus course, the natural numbers are defined in terms of sets and are
simply special kinds of sets, namely 0 is the empty set φ and 1 is the set
whose only element is the empty set, {φ}, and two is the set {φ, {φ}}, and
so forth. So the number two is actually the set {0, 1} and three is the set
{0, 1, 2}. This is all very elegant, and the operations of addition,
subtraction, multiplication and so forth are defined as relations, that is,
sets of ordered pairs. There is no computation in sight in set theory. But
there are logical rules that allow us to rigorously prove properties of the
arithmetic operations, e.g. that n+m = m+ n, and other algebraic laws.
For example, we can check that 5 + 2 == 7.

In OCaml, we know how to compute with the numbers, but we don’t know
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how to prove much about their mathematical properties. The type system
provides a way to say more about computation. We can say that for any
expressions n,m for which we know n is of type int and m is of type int,
then n+m,n ? m, n−m are of type int. This is a general fact about
computation that can be expressed cleanly using types. Keeping track of
types helps us avoid attempting to evaluate expressions that do not make
sense, such as 2 :: 3 = 5. It helps us create expressions that won’t get
stuck when we try to evaluate them. On the other hand, types won’t do
everything we want. Notice that it will type certain non-terminating
expressions as integers. This means that the OCaml type of integers is
nothing like the mathematical type. We call the type int a partial type
because expressions whose computations do not terminate at all are
classified as mapping int to int.

Can we add to OCaml a static check that expressions will converge to
numbers if they have type int?

# let rec loop n = if n = 0 then 1 else loop n+1 ;;

val loop : int -> int = <fun>

The type of bool for Booleans is one of the simplest types, having only
true and false as members. Is this type also partial? That is, can there be
a nonterminating expression whose type is a Boolean if it terminates?
There are also primitive Boolean operations which we have discussed in
Lecture 2 on the computation system. What about the type of
Characters, is it partial as well? The other key atomic type are the
string. The type unit has only one canonical element. Is it also partial?

Compound Types We have already looked at the type of functions
int→ int, the type of OCaml (partial) computable functions from integers
to integers. We know that the canonical forms fun x → b(x) have this
type if b(x) is of type int when the input x is of type int. We can also
write the functions with the “let construct” as follows

# let f x = (x * x) ;;

In this form OCaml can infer the type of x to be int because it knows the
type of integer multiplication. In general if b(x) has operators that require
a specific type, such as int, then the type can be inferred. We can also
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force this typing by explicitly typing the input and output. Here is the
example used in the textbook on page 7.

# let sum_if_true (test: int -> bool) (x:int) (y:int): int =

(if test x then x else 0) + (if test y then y else 0) ;;

val sum_if_true: (int -> bool) -> int -> int -> int = <fun>

#

This situation is general for inferring other such typings as well.

Polymorphic functions Some functions can have many types. For
example, fun x → x is the identity function on any type. OCaml can say
this using type variables of the form ′a. There are many examples of such
polymorphism. Here is another one: fun x → (x, x). What is its type?

In printed documents, the polymorphic types are sometimes written with
Greek letters. So the identity functions can have the type α→ α and
polymorphic ordered pairs have type α× β. So we know that funp→ fstp
has type (α× β)→ α.

# fst (1,2) ;;

- : int = 1

# fun x -> fst x ;;

- : ’a * ’b -> ’a = <fun>
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[1] Yves Bertot and Pierre Castéran. Interactive Theorem Proving and
Program Development; Coq’Art: The Calculus of Inductive
Constructions. Texts in Theoretical Computer Science.
Springer-Verlag, 2004.

[2] Adam Chlipala. An introduction to programming and proving with
dependent types in Coq. Journal of Formalized Reasoning (JFR),
3(2):1–93, 2010.

[3] Michael Gordon, Robin Milner, and Christopher Wadsworth.
Edinburgh LCF: a mechanized logic of computation, volume 78 of
Lecture Notes in Computer Science. Springer-Verlag, NY, 1979.

6



[4] Robert Harper, D.B. MacQueen, and R. Milner. Standard ML.
Technical Report TR ECS-LFCS-86-2, Laboratory for Foundations of
Computer Science, University of Edinburgh, 1986.

[5] Robert Harper and John C. Mitchell. On the type structure of
Standard ML. ACM Transactions of Programming Language Systems,
15(2):211–252, April 1993.

[6] Xavier Leroy. The Caml Light System, release 0.6: Documentation
and User’s Manual, September 1993.

[7] Xavier Leroy. The Objective Caml system release 1.07. INRIA,
France, May 1997.

[8] Xavier Leroy. The Objective Caml System: Documentation and User’s
Manual, 2002. With Damien Doligez, Jacques Garrigue, Didier Rémy,
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