CS3110 Spring 2016 Lecture 26:
Course Review

Robert Constable

Topics

e Simple study guidelines

I am making up the exam, so read the lecture notes and review
problem sets.

Don’t be in the position of student X in prelim: didn’t attend
lectures and didn’t read the notes, so was totally unprepared.

There will be an essay question related to the main points of
the course:

— Why OCaml is valuable.
— Value of OCaml at Jane Street.
— Relationship of OCaml to Coq proof assistant.
Look for relationship to proof assistants Coq and Nuprl.
— The type system: partial vs. total, type inference vs.
proving typehood
— Types and logic
Think about the future role of CS in the world.

— Role of PL innovation — autocatylitic process
— The complexity of our tasks: building software vs building
bridges
Roman bridge in Portugal, “We built this bridge to last
forever.”

Cyber security circa 2020

e Logic and Types
— Here is how to solve ~~(a V ~a) (done on the blackboard and
sketched below)

— There will be some question of the form “find a member of this
type, if there is one, view the element as evidence (proof) that
the typing relationship holds.”

— Know what partial types are
— Know what dependent types are

— Think about the “broader roles of types” illustrated by the
$10M NSF Expeditions project for using Coq in CS education
and the proposed $15B for cyberphysical weapons systems.

e Problem set material.

e Ties to the major trusts and challenges of CS.

Logic example

Fe~ (Vo ~a)
F ((a V (e = Void)) — Void) — Void by A(f.__)

f:(aV(a— Void)) — Void F Void by applying f
F (o V (e = Void)) prove right side
Fa — Void AMz.__)
x:a F Void by applying f again
Fa V(a— Void) prove left side
Fa by z

The program is A(f.ap(f; RO\(z-ap(f; L(z))))).
The extract of this proof done in Nuprl looks like this:

Af(f (inr(Ap.(f(inl p)))))

where f:~(PV (~P))=((PV (~P))= False) and p : P. The full proof
of this in Nuprl can be found here http://www.nuprl.org/MathLibrary/
LogicalInvestigations/theorem10.html.

OCaml illustrates well the value of an expressive yet simple type system.
Extending the system to include dependent types makes it vastly more
expressive, capable of rendering most concepts from modern mathematics.
To treat mathematics it is also critical to go beyond partial types and
include the total types.

http://www.nuprl.org/MathLibrary/LogicalInvestigations/theorem10.html
http://www.nuprl.org/MathLibrary/LogicalInvestigations/theorem10.html

One of the remarkable benefits of adding dependent total types is that it is
possible to fully express constructive logic. Contrary to popular belief, this
logic is more expressive and more general than so called classical logic
based on “truth values.” Instead of truth values, constructive logic is
grounded in computational evidence. It includes classical (Boolean valued)
logic as a special case. That is possible because the “classical logical
operators” can be expressed using the constructive ones. For example

aV ~a, is expressed as ~~(a V ~a). The classical existential quantifier
is defined as ~Vz:a. ~f[(x).

We briefly discussed dependent types since they are used in the Agda, Coq,
Nuprl, and F* proof assistants. In a previous version of the course we used
the following dependent type only for specifications: x: a where b(z) for
b:a — bool. We mentioned that = : o x 5(x) is another useful dependent
type.

We can “simulate” the dependent type z: o where b(x) as follows.
Consider the dependent type x: int where x > 0. We can get the effect
using nat:fun x — if x < O then -x else x. Here is OCaml code
that uses this method.

let nat = fun x -> if x < 0 then -x else x;;
val nat : int -> int = <fun>

let rec add (x:int)(y:int) : int = if x = O then y else (add (x-1) y) + 1;;
val add : int -> int -> int = <fun>

add (nat (-5)) 6;;
- : int = 11

add (-5) 6;;
Stack overflow during evaluation (looping recursion?).

Topics definitely covered on the final exam

10.

. OCaml operational semantics. (Lecture 2)

In addition, we cover lazy evaluation as an option as discussed in
comparing fix and efiz. (Lecture 20)

Previous versions of the course included defining a function that
counts the steps of evaluation for a simple subset of the language,
e.g. OCalf.

OCaml types and type checking rules. (Lectures 3, 4, 6, 7, 21)

Definition of the constructive reals and the operations of addition
and multiplication. Method for proving x < y, Lemma 2.18, and the
method of creating an irrational number by diagionalization over the
rationals, Theorem 2.19. (Lectures 11, 12, 13, 15)

Executing convex hull on a list of distinct real numbers. (Lectures
16, 17)

What is a proof assistant? What kinds of information were provided
with the Nuprl proof assistant? (Lecture 5, 8, 9, 18, 19, 25)

Binary search tree operations. (Lectures 18, 19)

Understand the leader election in a ring protocol and 2/3 consensus.
(Lectures 22, 23, 25)

How can consensus protocols fail to give answers? (Lectures 22, 23,
25)

What is a message sequence diagram? What is local order in such a
diagram? What is the causal order relationship? (Lectures 22, 23, 25)

Be able to prove the agreement and validity properties for 2/3
consensus. (Lectures 22, 23, 25)

Historical context and historical moments for
computer science

Comparison to physics and biology — the 20th century sciences

Einstein Turing (did his PhD at Princeton)
Heisenberg McCarthy (MIT then Stanford)
Bohr Newell (CMU)

Planck Simon (CMU)

Oppenheimer Hoare (Oxford)

Bethe Hartmanis (Cornell)

Hopcroft (Cornell)
(An American science)

The next fifty years — some speculation, some issues, some dangers

A L. exploring the universe
A 1. augmented humans
The cyber security issue.

“In the game of life and evolution there are three players at the
table: human beings, nature, and machines.

I am firmly on the side of nature. But nature, I suspect, is on
the side of the machines.”

-George B. Dyson
Darwin among the Machines,
the evolution of global intelligence, 1997.

George Dyson born in Ithaca, NY in 1953, son of the physicist Freeman J.
Dyson.

“The scientist both seeks and makes truth.”

