CS3110 Spring 2016 Lecture 25:
Event Logic

Robert Constable

Topics

1. Reasoning about 2/3 consensus.

We will prove three critical properties of consensus protocols. We
discussed these properties in Lecture 22. They are:

P1: Unanimous inputs of value v cause the protocol to decide on v.
We call this unanimity.

P2: All decided values are inputs. We call this validity.

P3: Any two decisions have the same value. We call this agreement.

2. The Logic of Events.

We can axiomatize and formally prove the above properties of
protocols as well as others. The reasoning is based on events in the
(general process) computing model. We can axiomatize this logic
with a few intuitively clear axioms that capture features of the
message sequence diagrams.

3. We will review the enduring concepts from the course next lecture.
The great programming languages leave their mark on computing
theory as well as on decades of important applications. The earliest
major languages were Fortran, Algol, and Lisp — from the 1960s
approximately. Fortran and Lisp are still well used, and Algol left its
make on the theory and methodology of creating and implementing
programming languages.



1 Reasoning about 2/3 (simple) consensus

The Synthesized 2/3 Protocol

Begin
r : Nat
decided_i, vote_i : Bool

r=20, L =nil
decided_i = false
vi = input to Pi
vote_i = vi

Until decided_i do:
1. ri=r+1

2. Broadcast vote <r,vote_i> to group G
3. Collect 2f 4+ 1 round r votes in list L
4. vote_i := majority(L)

5. If unanimous(L) then decided_i:= true

End
Broadcast decision

Note: Collect means to add any received votes to L, and check whether
there are 2f + 1 votes with the same round number.

We will prove the three properties of the protocol that we discussed
previously: unanimity, validity, and agreement.

P1: If all inputs propose value v, then any decision must have value v.
We wrote this symbolically as:

Vo : T.(Ve : Event. input(e) = v) = (Ve : Event. decide(e) = v)

We prove this by induction on rounds. In round 1 only inputs are
broadcast to the replicas. Hence only inputs are collected at step 3. Thus
only inputs are counted in the majority. So only inputs are broadcast in
round 2. This argument also shows that if only inputs are broadcast in



round 7, then only inputs can be decided. If the only input is v, then this
is the only possible decision. QED

P2: All decided values are input values.
Ve : Event. E(decide(e)) =
Je’ : Event. (¢/ < e & decide(e) = input(e’))

We can also prove this by induction on rounds. If the protocol is in round
1, then all collected values are inputs. For any round r, if all collected
values are inputs, then only inputs will be broadcast. Hence any
unanimous value will be an input. QED

P3. Agreement, any two decisions have the same value.
Vey,eq : Event. E(decide(e1)) & E(decide(ez)) =
decide(e1) = decide(es)

Suppose that two processes execute decide in the same round r, e.g. set
decided_i := true and decided_j := true. This means that they have
collected 2f + 1 votes and they are unanimous at process ¢ say for a value
v;. (For example, for f = 1, 3 votes are collected, and all three are for v;.)
In process j, 3 values are collected, suppose they are all for v; # v;. This is
impossible since there are only 4 votes to collect and three are for v;.

In general, we see that the requirement that a decision is made only when
2f 4+ 1 votes are the same, disallows two different collections of 2f + 1
votes since there are only 3f + 1 possibilities, not 4f + 2. QED

If they decide in different rounds, say ¢ in r and j in 7’ > r, then we need a
more subtle argument. Optional exercise: Finish the proof for this case.

2 The Logic of Events

One way to understand asynchronous distributed protocols is to think in
terms of message sequence diagrams as we did in explaining the 2/3
consensus protocol. Here is a diagram to remind us for the case of one
possible failure, 3f + 1 will have the value 4. So we show the four
participants and the inputs they receive.



The events are marked as dots on the “time line” of each process. The
logic of events postulates properties of the events. At each location, we see
that the events are linearly ordered.

There is another important ordering relation less clearly discernible.
Lamport called it out and named it as causal order. The red event at P,
the 5th event on the P; time line, was caused by the four previous events
at P;. Using the message sequence diagram, we can trace out the causal
order relation.

The logic of events provides axioms to characterize the local order of
events at each process as well as the causal order relation. The logic also
depends on assumptions about message delivery and process failures.

The logic of events has been fully implemented by the Nuprl proof
assistant and used to prove that protocols have certain behaviors under
various assumptions about process failure and message delivery. The
current list of axioms and theorems can be examined in the Nuprl
mathematics library at http://www.nuprl.org/wip/EventOrdering/new!
event-ordering/index.html|. We discuss two key properties of this logic.


http://www.nuprl.org/wip/EventOrdering/new!event-ordering/index.html
http://www.nuprl.org/wip/EventOrdering/new!event-ordering/index.html

Property 1: The events at any location are totally ordered.

Property 2: If only the events at finitely many locations are
considered, then causal order is well founded. This
means that we can prove properties of protocols by

mduction on causal order.

Here are some of the other “laws” of the logic of events.

Table 1. Signatures in the Logic of Events

Events with Order
E:D
pred?: E — (E + Loc)
sender?: £ — (E + Unit)

and with Values
Kind = Loc x Act + Lnk x Tag
vtyp: Kind — T'ype
kind: e : £ — Kind
val: e : E — vtyp(kind(e))

and with State
typ: Id — Loc — Type
initially: © : Id — i : Loc — typ(z,1)
when: = : Id — e : E — typ(zx,loc(e))
after: x : Id — e : E — typ(x,loc(e))

Definitional extensions
loc: £ — Loc

first: £ — Bool

isrcv: £ — Bool
r<y, T<jocl

sender: {e : Elisrcv(e)} —» E

link: {e : Elisrcv(e)} — Link
tag: {e: Elisrcv(e)} — Tag

state(i) = x : Id — typ(x,1i)

state-when: e : £ — state(loc(e))
state-after: e : £ — state(loc(e))



Table 2. Axioms of Basic Event Structures

. On any link, an event sends boundedly many messages; formally: VI : Link.Ve : E.3e’ :
ENe'" : E.R(e",e) = €' < € ANloc(e') = dst(l) where R(e”,e) = isrcv(e”) A
sender(e’) = e Alink(e") =1

. The predecessor function is one-to-one; formally: Veq,e2 : E. pred?(e1) = pred?(e2) =
€1 = €2

. Causal order is (strongly) well-founded; formally: 3f : £ — N.Vej,es : E.e1 < ea =
fler) < f(e2)

. The location of the sender of an event is the source of the link on which the message was
received; formally: Ve : E. isrcv(e) = loc(sender(e)) = src(link(e)

. Links deliver messages in FIFO (first in first out) order; formally: Veq, ez : E. link(e1) =
link(e2) = sender(e1) < sender(ez2) = e1 < ez

. State variables change only at events, so that: Ve : E.— first(e) = (zwhene) =
(x after pred(e))



Message sequence diagram for 2/3 consensus

/ 0 / 0 / 1 / 1 from clients

Pl P2 P3 P3 rounds r
Broadcast
0 0 0 0 r=1

— N\
<1,0>,<1,1>

<1,0>, <1,0> <1,0>,<1,1>,<1,1>
DisE

_.-"7 vote 1

not unanimous

<1,0>,<1,0>,<1,1> <1,0>,<1,0>,<1,1>
vote 0 ~vote 0
not unanimous _--not unanimous
<1,1>e "
<1,1>,<1,0>,<1,1>
vote 1 not unanimous
r=2 r=2 r=2
<2,0> <2,0> <1,0>

ignore late arrival



	Reasoning about 2/3 (simple) consensus
	The Logic of Events

