
CS3110 Spring 2016 Lecture 25:

Event Logic

Robert Constable

Topics

1. Reasoning about 2/3 consensus.

We will prove three critical properties of consensus protocols. We
discussed these properties in Lecture 22. They are:

P1: Unanimous inputs of value v cause the protocol to decide on v.
We call this unanimity.

P2: All decided values are inputs. We call this validity.

P3: Any two decisions have the same value. We call this agreement.

2. The Logic of Events.

We can axiomatize and formally prove the above properties of
protocols as well as others. The reasoning is based on events in the
(general process) computing model. We can axiomatize this logic
with a few intuitively clear axioms that capture features of the
message sequence diagrams.

3. We will review the enduring concepts from the course next lecture.
The great programming languages leave their mark on computing
theory as well as on decades of important applications. The earliest
major languages were Fortran, Algol, and Lisp – from the 1960s
approximately. Fortran and Lisp are still well used, and Algol left its
make on the theory and methodology of creating and implementing
programming languages.

1



1 Reasoning about 2/3 (simple) consensus

The Synthesized 2/3 Protocol

Begin
r : Nat
decided i, vote i : Bool

r = 0, L = nil
decided i = false
vi = input to Pi
vote i = vi

Until decided i do:

1. r := r + 1

2. Broadcast vote <r,vote i> to group G

3. Collect 2f + 1 round r votes in list L

4. vote i := majority(L)

5. If unanimous(L) then decided i:= true

End
Broadcast decision

Note: Collect means to add any received votes to L, and check whether
there are 2f + 1 votes with the same round number.

We will prove the three properties of the protocol that we discussed
previously: unanimity, validity, and agreement.

P1: If all inputs propose value v, then any decision must have value v.
We wrote this symbolically as:

∀v : T.(∀e : Event. input(e) = v) ⇒ (∀e : Event. decide(e) = v)

We prove this by induction on rounds. In round 1 only inputs are
broadcast to the replicas. Hence only inputs are collected at step 3. Thus
only inputs are counted in the majority. So only inputs are broadcast in
round 2. This argument also shows that if only inputs are broadcast in

2



round r, then only inputs can be decided. If the only input is v, then this
is the only possible decision. QED

P2: All decided values are input values.

∀e : Event. E(decide(e)) ⇒
∃e′ : Event. (e′ < e & decide(e) = input(e′))

We can also prove this by induction on rounds. If the protocol is in round
1, then all collected values are inputs. For any round r, if all collected
values are inputs, then only inputs will be broadcast. Hence any
unanimous value will be an input. QED

P3. Agreement, any two decisions have the same value.

∀e1, e2 : Event. E(decide(e1)) & E(decide(e2)) ⇒
decide(e1) = decide(e2)

Suppose that two processes execute decide in the same round r, e.g. set
decided i := true and decided j := true. This means that they have
collected 2f + 1 votes and they are unanimous at process i say for a value
vi. (For example, for f = 1, 3 votes are collected, and all three are for vi.)
In process j, 3 values are collected, suppose they are all for vj 6= vi. This is
impossible since there are only 4 votes to collect and three are for vi.

In general, we see that the requirement that a decision is made only when
2f + 1 votes are the same, disallows two different collections of 2f + 1
votes since there are only 3f + 1 possibilities, not 4f + 2. QED

If they decide in different rounds, say i in r and j in r′ > r, then we need a
more subtle argument. Optional exercise: Finish the proof for this case.

2 The Logic of Events

One way to understand asynchronous distributed protocols is to think in
terms of message sequence diagrams as we did in explaining the 2/3
consensus protocol. Here is a diagram to remind us for the case of one
possible failure, 3f + 1 will have the value 4. So we show the four
participants and the inputs they receive.

3



P1 P2 P3 P4
1 1 1 0

1

1

1

1

1

1

0

0

0

0

1

1

11

1

1

1

1

The events are marked as dots on the “time line” of each process. The
logic of events postulates properties of the events. At each location, we see
that the events are linearly ordered.

There is another important ordering relation less clearly discernible.
Lamport called it out and named it as causal order. The red event at P1,
the 5th event on the P1 time line, was caused by the four previous events
at P1. Using the message sequence diagram, we can trace out the causal
order relation.

The logic of events provides axioms to characterize the local order of
events at each process as well as the causal order relation. The logic also
depends on assumptions about message delivery and process failures.

The logic of events has been fully implemented by the Nuprl proof
assistant and used to prove that protocols have certain behaviors under
various assumptions about process failure and message delivery. The
current list of axioms and theorems can be examined in the Nuprl
mathematics library at http://www.nuprl.org/wip/EventOrdering/new!
event-ordering/index.html . We discuss two key properties of this logic.

4

http://www.nuprl.org/wip/EventOrdering/new!event-ordering/index.html
http://www.nuprl.org/wip/EventOrdering/new!event-ordering/index.html


Property 1: The events at any location are totally ordered.

Property 2: If only the events at finitely many locations are
considered, then causal order is well founded. This
means that we can prove properties of protocols by
induction on causal order.

Here are some of the other “laws” of the logic of events.

discuss some extra structure that must be added to allow us to give the semantics for the
read-frame clause.

The details of how a mathematical structure is represented in type theory (as a depen-
dent product type which includes its axioms via the propositions as types isomorphism)
is not relevant to this paper, so we present event structures by giving the signatures of the
operators it provides and describing the axioms. In the following, D denotes a universe
of types that have decidable equality tests, and the types Loc, Act, and Tag are all names
for the same type Id of identifiers. This type is actually implemented, for software engi-
neering reasons related to namespace management and abstract components, as another
space of atoms like the ones used here for protected information. Here Id is just a type
in D. The type Lnk is the product Loc × Loc × Id, so a link l is a triple 〈i, j, x〉 with
src(l) = i and dst(l) = j.

Basic Event Structures The account will be layered, starting with the most basic prop-
erties of events and adding layer by layer more expressiveness.

Table 1. Signatures in the Logic of Events

Events with Order Definitional extensions
E: D loc: E → Loc

pred?: E → (E + Loc) first: E → Bool

sender?: E → (E + Unit) isrcv: E → Bool

x < y , x <loc y

and with Values
Kind = Loc×Act+ Lnk × Tag sender: {e : E|isrcv(e)} → E

vtyp: Kind→ Type link: {e : E|isrcv(e)} → Link

kind: e : E → Kind tag: {e : E|isrcv(e)} → Tag

val: e : E → vtyp(kind(e))

and with State
typ: Id→ Loc→ Type state(i) = x : Id→ typ(x, i)

initially: x : Id→ i : Loc→ typ(x, i)

when: x : Id→ e : E → typ(x, loc(e)) state-when: e : E → state(loc(e))

after: x : Id→ e : E → typ(x, loc(e)) state-after: e : E → state(loc(e))

Events with Order Events are the atomic units of the theory. They are the occurrences
of atomic actions in space/time. The structure of event space is determined by the or-
ganization of events into discrete loci, each a separate locus of actions through time at
which events are sequentially ordered. Loci abstract the notion of an agent or a process.
They do not share state. All actions take place at these locations.

There are two kinds of events, internal actions and signal detection (message recep-
tion). These events are causally ordered, e before e′, denoted e < e′. As Lamport postu-
lated, causal order is the structure of time. Causal order is defined in terms of two primi-
tive functions, pred? and sender? which compute respectively the previous action at its
locus (if the event is not the first at that location) and the sender of a received message.5



To give an idea of how these layers are formally presented, we show in table 1 the
signature of some of the layers. In these definitions we use the disjoint union of two sets
or types, A+B and the computable function space operator A→ B. The type Unit has
a single distinguished element.

The signature of events with order requires only two discrete types E and Loc, and
two partial functions. The function pred? finds the predecessor event of e if e is not the
first event at a locus or it returns the location if e is the first event. The sender?(e) is the
event that sent e if e is a receive, otherwise it is a unit. We can find the location of an
event by tracing back the predecessors until the value of pred belongs to Loc. This is a
kind of partial function on E. From pred? and sender? we can define Boolean valued
functions that identify the first event and receive events. We can define a function loc that
returns the location of an event. Causal order, e < e′, is defined as the transitive closure
of the relations e = pred?(e′) and e = sender?(e′). We can also define the local linear
ordering of events at a location, <loc, the restriction of causal order, <, to a location.

Events with Value We next classify events by their kind, by introducing the type Kind
and a function kind from events to kinds. The type Kind is a disjoint union that repre-
sents our two basic kinds: an internal action at a location, or the receive of a message on
a link with a given tag. Each kind of action has a value associated with it. The value of
a receive event is the message received. The value of an internal action can be chosen
randomly or nondeterministically. The value of an event e is val(e) and its type depends
only on kind(e).

Events with State We are interested in actions with observable results. Observables are
known by identifiers and have types. At a fixed location or agent, the map of identifiers
to values is its state. Relations when, after, and initially (which we write with infix
notation) connect events to the values of identifiers, e.g. x when e is the value of the
variable x at the location loc(e) when event e occurs. For the basic event structures, we
need only the six simple axioms listed in table 2.

Table 2. Axioms of Basic Event Structures

1. On any link, an event sends boundedly many messages; formally: ∀l : Link.∀e : E.∃e′ :
E.∀e′′ : E.R(e′′, e) ⇒ e′′ < e′ ∧ loc(e′) = dst(l) where R(e′′, e) ≡ isrcv(e′′) ∧
sender(e′′) = e ∧ link(e′′) = l

2. The predecessor function is one-to-one; formally: ∀e1, e2 : E. pred?(e1) = pred?(e2) ⇒
e1 = e2

3. Causal order is (strongly) well-founded; formally: ∃f : E → N.∀e1, e2 : E. e1 < e2 ⇒
f(e1) < f(e2)

4. The location of the sender of an event is the source of the link on which the message was
received; formally: ∀e : E. isrcv(e)⇒ loc(sender(e)) = src(link(e)

5. Links deliver messages in FIFO (first in first out) order; formally: ∀e1, e2 : E. link(e1) =
link(e2)⇒ sender(e1) < sender(e2)⇒ e1 < e2

6. State variables change only at events, so that: ∀e : E.¬ first(e) ⇒ (x when e) =
(x after pred(e))

4.2. Message Automata

In our theory, all processes can be built out of nine basic clauses by composition. We
call the resulting family of realizers message automata. As we said in the informal intro-

6



Message sequence diagram for 2/3 consensus

P1 P2 P3 P3

Broadcast

r = 2

ignore late arrival

r = 2

<2, 0>

r = 2

<2, 0>

from clients

rounds r

r = 1

0 0 1 1

<1, 0>

<1, 1>,<1, 0>,<1, 1>

0

<1, 0>, <1, 0>

<1, 0>

0

vote 1

<1, 1>

not unanimous

<1, 0>,<1, 1>,<1, 1>

<1, 0>,<1, 0>,<1, 1>

vote 0
not unanimous

vote 0
not unanimous

0

<1, 0>,<1, 0>,<1, 1>

0

<1, 0>,<1, 1>

<1, 1>

vote 1 not unanimous

7


	Reasoning about 2/3 (simple) consensus
	The Logic of Events

