
CS3110 Spring 2016 Lecture 23:

Distributed Computing

with Functional Processes continued

Robert Constable

Topics

1. Message sequence diagrams and event structures.

2. A General Process Model (GPM) for asynchronous distributed
computing.

3. Coding 2/3 consensus as a functional process.

4. A Logic of Events for reasoning about protocols.

Reminders

1. Dr. Yaron Minksy will give the next lecture on Tuesday May 3.

2. PS6 is about distributed computing in OCaml, in particular
implementing the 2/3 simple consensus protocol. The staff has
created a substantial new software system for your use.

1

1 Message sequence diagrams for consensus –
(3f + 1 case)

P1 P2 P3 P4

2

2 General Process Model (GPM)

2.1 Overview

To reason about protocols we need a precise yet realistic mathematical
model, like the evaluation rules for OCaml programs. Adding rules for
sending and receiving messages is more complex than the evaluation rules.
We need to formalize properties of the communication infrastructure. At
one extreme is communication over the internet and at the other,
communication in a data center.

At a very high level of abstraction, the communication layer introduces a
level of uncertainty. This includes a certain amount of randomness
combined with a loss of information due to complexity. All of the precise
formal models of communication are limited in various ways. This leads to
a plethora of formal models such as Petri nets (one of the oldest),
communicating sequential processes (CSP, Hoare [4]), Calculus of
Communicating Systems (CCS, Milner [9]), IO Automata (Lynch [8]),
Message Automata ([1, 3]), and many more.

Here we use a very simple method called a General Process Model
(GPM [2]) tailored to treat asynchronous protocols.

We will not study this model in detail (even though it is very precisely
defined). Here are the basic ideas presented informally. The goal is to be
more precise about the notion of an asynchronous system.

A system consists of components. A component has a location, an address
for sending it messages. It has a internal part which is the computation
process. It also has an external part used for communication.
Communication is done with messages. These can hold data and processes.

A system computes in an environment which provides communication
among components. (There can be communication among systems as well,
but we focus on analyzing specific systems.)

2.2 Basic Concepts

The following section is taken from [2].

We begin with an overview of our model of distributed computation and
the concepts we use to reason about them. The next section formalizes in
Computational Type Theory (CTT) all the italicized terms.

3

A system consists of a set of components. Each component has a location,
an internal part, and an external part. Locations are just abstract
identifiers. There may be more than one component with the same
location.

The internal part of a component is a process—its program and internal
(hidden) state. The external part of a component is its interface with the
rest of the system. In this paper, this interface will be a list of messages,
containing either data or a process, each labeled with the location of its
recipient. The “higher order” ability to send a message containing a
process allows a system to grow by “forking” or “bootstrapping” new
components. (The external part can also be used to model the shared
memory accessible to components at the same location, but will not be
discussed in this paper.)

A system computes in steps as follows. In each step, the environment may
choose and remove a message from the external part of a component. If
components exist at the location to which the message is addressed, each
of them receives the message as input and computes a pair consisting of a
process, which becomes the next internal part of the component, and a list
of messages, which is appended to the current external part of the
component. If the chosen message is addressed to a location that is not yet
in the system, then a boot process creates a new component at that
location. The boot process to be used is supplied as a system parameter.

An infinite sequence of steps, starting from a given system and using a
given boot-process, is a run of that system. From a run of a system we
derive an abstraction of its behavior by focusing on the events in the run.
The events are the pairs, 〈x, n〉, of a location and a step (a “point in
space-time”) at which location x gets an input message at step n
(i.e.“information is transferred”). Every event has a location, and there is
a natural causal-ordering on the set of events, the ordering first considered
by Lamport [7]. This allows us to define an event-ordering, a structure,
〈E, loc, <, info〉, in which the causal ordering < is transitive relation on
E that is well-founded, and locally-finite (each event has only finitely
many predecessors). Also, the events at a given location are totally
ordered by <. The information, info(e), associated with event e is the
message input to loc(e) when the event occurred.

4

2.3 Leader Election in a Ring

We have found that requirements for distributed systems can be expressed
as (higher-order) logical propositions about event-orderings. To illustrate
this and motivate the results in the rest of the paper we present a simple
example of leader election in a group of processes arranged in a ring.

Each participating component will be a member of one or more groups and
each group has a name. A message 〈G, j〉 from the environment to
component i informs it that it is in group G and has neighbor j in group
G. We assume that, by the time the protocol begins, each such group is a
ring, that is, the graph of the relation j = neighbor(G, i) is a simple cycle.
When any component in a group G receive a message 〈[start], G〉 it starts
the leader election protocol whose goal is to choose one member of group
G to be the leader and inform every member of G of the leader’s location
(presumably as the first step in a more complex protocol). To make this
easy we also assume that each component at location i has a unique
identifier uid(i) that is a number—so that the uid’s can be ordered.

The simple protocol is this: every component that receives a start message
proposes itself by sending, to its neighbor, its uid in a message with header
propose. Every component that receives a proposal with a uid, p, different
from its own uid, u, proposes the maximum, max(u, p) to its neighbor. A
component i that receives its own uid in a proposal is the leader and so
sends a message with its location, i, and header leader . Every component
other than the leader that receives a leader message forwards the message
to its neighbor.

We describe protocols like this by classifying the events in the protocol.
The events in this protocol are the start events, the propose events and the
leader events. The components can recognize events in each of these
classes (in this example they all have distinctive headers) and they can
associate information with each event (e.g. the group G, the proposed uid,
the location of the leader). Events in some classes cause events with
related information content in other classes.

In general, an event class X is function on events in an event ordering that
partitions the events into two sets, E(X) and E − E(X), and assigns a
value X(e) to events e ∈ E(X). In our example, let us suppose that the list
xs contains the locations of all the components that are participating in
the protocol and might be members of the groups. An event e that is the
receipt of a start message 〈[start], G〉 at a location i ∈ xs is a member of an

5

event class Start , with value Start(e) = G. Such classes, defined by a list of
locations and a particular message header, are the basic event classes.
Likewise, we may define basic classes Propose and Leader with values of
the form Propose(e) = 〈G, p〉 and Leader(e) = 〈G, x〉. When an event in
any of these basic classes occurs, the receiving component, at location
i ∈ xs, will be able to associate additional pieces of information with the
event, such as its uid(i), or its location i, or neighbor(G, i) from the most
recent message from the environment. For example, we define event class
Start+ to have the same events as class Start but assign values given by

Start+(e) = 〈G, uid(i), j〉
where i = loc(e), j = neighbor(G, i)

Similarly, we define Propose+, and Leader+ by

Propose+(e) = 〈G, p, i, uid(i), j〉
Leader+(e) = 〈G, x, i, j〉

To describe the leader election protocol in terms of these event classes, we
declare that every event e with Start+(e) = 〈G, uid , j〉 causes an event e′

with location j and value Propose(e′) = 〈G, uid〉. Every event e with
Propose+(e) = 〈G, p, i, uid , j〉 for which p 6= uid causes an event e′ with
location j and value Propose(e′) = 〈G,max(p, uid)〉. Every event e with
Propose+(e) = 〈G, p, i, uid , j〉 for which p = uid causes an event e′ with
location j and value Leader(e′) = 〈G, i〉. Every event e with Leader+(e) =
〈G, x, i, j〉 for which x 6= i causes an event e′ with location j and value
Leader(e′) = 〈G, x〉.
Clearly, these constraints (and the assumption that group G forms a ring)
imply that after a Start event, the member max ∈ G with the maximum
uidmax must eventually propose uidmax and this will be proposed by all
members of the group, until component max receives its own uidmax. It
will then cause a Leader -event with value 〈G,max〉 at its neighbor and this
will be forwarded around the ring, so every member of the group is
informed of the location max. The formal proof of these statements is
easily constructed using standard logical methods. (If we want to be sure
that all Leader -events for G have the same value, then we also need
constraints that say that Propose and Leader events are caused only by
the above rules.)

Programmable classes Each event class in this example is
programmable. A class X is programmable if at each location l there is a

6

process that can recognize X-events at l and compute their values using
only information received at l.

We describe distributed computation by defining programmable event
classes and specifying their interactions in term of propagation rules and
propagation constraints.

Propagation rules and constraints If A and B are event classes, the

propagation rule A
f⇒ B@g is a proposition about event orderings saying

that for every A-event with value v, there is a B-event, with value f(v),
causally after it, at each location x ∈ g(v). We require that distinct
A-events cause distinct B-events. Formally,

∀x : Loc. ∃p : {e :E(A)|x ∈ g(A(e))}
→ {e′ :E(B)|loc(e′) = x}.

injection(p) ∧
∀e :E(A). e < p(e) ∧ B(p(e)) = f(A(e))

where injection(p) asserts that that the function p is one-to-one.

The propagation constraint A
f⇐ B@g is the same proposition, but with

injection(p) replaced by surjection(p). This says that every B-event
“comes from” an appropriate A-event.

We can express our leader election protocol as a conjunction of propagation
rules and constraints. For instance, two of the propagation rules are:

Start+
f⇒ Propose@g, where

f(〈G, uid , j〉) = 〈G, uid〉, g(〈G, uid , j〉) = [j]

Leader+ f⇒ Leader@g, where

f(〈G, x, i, j〉) = 〈G, x〉
g(〈G, x, i, j〉) = if x = i then nil else [j]

If ψ is a proposition about event orderings, we say that a system realizes ψ
if the event-ordering of any run of the system satisfies ψ. We extend the
“proofs-as-programs” paradigm to “proofs-as-processes“ for distributed
computing by making constructive proofs that requirements are realizable.
For compositional reasoning, it is desirable to create, when possible, a
strong realizer of requirement ψ—a system that realizes ψ in any context.
Formally, system S is a strong realizer of ψ if the event-ordering of any run
of a system S′ such that S ⊆ S′, satisfies ψ. If S1 is a strong realizer of ψ1

7

and S2 is a strong realizer of ψ2, then S1 ∪ S2 is a strong realizer of
ψ1 ∧ ψ2.

One of our main results is that we can automatically extract strong
realizers for propagation rules like those used in the leader election
example. Basic event classes are programmable, and the set of
programmable event classes is closed under a variety of combinators.

If B is a basic class and if we have reliable message delivery, then a
component may cause an event in B by placing a message with an
appropriate header on its external part. A rule, A⇒ B is
programmable-basic (PB) if A is programmable and B is basic. Thus, under
the assumption of reliable message delivery, every PB-rule is realizable.

Reliable message delivery is an assumption about the environment. One
weakening of this assumption allows some components to suffer send
omission faults. Under this assumption, parameterized by a set of
locations, F , called the fail-set, every message on the external part of a
component whose location is not in F , will eventually be delivered.

If send omissions are allowed, not every PB-rule is realizable, but the
restricted rule A|(¬F)⇒ B is realizable, when A⇒ B is PB, and A|(¬F)
is the class of A-events whose location is not in the fail-set. A fault-tolerant
protocol like Paxos can be described by such restricted rules, and proved
correct under appropriate assumptions on the size of the fail-set.

A PB-rule A⇒ B is also strongly realizable. This is because, essentially
by definition, class A is programmable only if there is a system S that
recognizes A-events in any context. So in a run of system, S′, with S ⊆ S′,
the components in S will still recognize A-events. Also, if message delivery
is reliable then the addition of extra components will not prevent the
required B-events from occurring.

Unfortunately, some desirable properties of protocols like leader election do
not follow from conjunctions of PB-rules alone. We also need some

propagation constraints, of the form A
f⇐ B@g. The realizer we construct

for A
f⇒ B@g generates B-events only from A-events, so it also realizes the

propagation constraint A
f⇐ B@g. But it is not a strong realizer of the

constraint because, in an unrestricted larger system, other components
may cause B-events.

Strong realizers will always compose to strong realizers. We can compose
(nonstrong) realizers for propagation rules and propagation constraints if

8

we can show that they do not “interfere” with one another. For example,
the realizer we construct for A⇒ B will trivially realize C ⇐ D if classes
B and D are disjoint; and that can be trivially guaranteed if classes B and
D are basic classes distinguished by different “message headers.” That
simple design rule reduces the proof of noninterference to a “compatibility
check” that the message headers used by different rules are different.

Because a verified system may run in an environment that includes
unverified, untrusted code for which we cannot perform the compatibility
check, it would be desirable to ensure that the verified system is a strong
realizer for a conjunction of propagation rules and propagation constraints.
One way to modify a group of components in a realizer so that they form a
strong realizer is to have them encrypt their messages with a shared key.

3 Coding 2/3 Consensus

Various languages have been designed to facilitate coding asynchronous
protocols and systems. These systems have a special character because
they interact with an environment which is fundamentally unpredictable.
We do not have room in this course to deeply explore these languages and
formalisms that were mentioned already in this lecture. However, it is
worth a brief look at the style of one such language developed here at
Cornell called EventML [10]. It is similar in spirit to the Orc language (or
orchestration) developed at the University of Texas [5, 6]. Here is a sample
of code and definitions in EventML, taken as excerpts from this paper [11]

References

[1] Mark Bickford. Unguessable atoms: A logical foundation for security.
In Verified Software: Theories, Tools, Experiments, Second
International Conference, pages 30–53, Toronto, Canada, 2008.
VSTTE 2008.

[2] Mark Bickford, Robert Constable, and David Guaspari. Generating
event logics with higher-order processes as realizers. Technical Report
http://hdl.handle.net/1813/23562, Cornell University, 2011.

9

[3] Mark Bickford and Robert L. Constable. Formal foundations of
computer security. In Formal Logical Methods for System Security and
Correctness, volume 14, pages 29–52, 2008.

[4] C. A. R. Hoare. How did software get so reliable without proof? In
Marie-Claude Gaudel and James Woodcock, editors, Proceedings
FME’96: Industrial Benefit and Advances in Formal Methods.
Springer, 1996.

[5] David Kitchin, William R. Cook, and Jayadev Misra. A language for
task orchestration and its semantic properties. pages 477–491, 2006.

[6] David Kitchin, Adrian Quark, William R. Cook, and Jayadev Misra.
The Orc programming language. pages 1–25, 2009.

[7] Leslie Lamport. Time, clocks, and the ordering of events in a
distributed system. Communications of the ACM, 21(7):558–65, 1978.

[8] Nancy Lynch and Mark Tuttle. An introduction to Input/Output
automata. Centrum voor Wiskunde en Informatica, 2(3):219–246,
September 1989.

[9] Robin Milner. A Calculus of Communicating Systems.
Springer-Verlag, 1980.

[10] Vincent Rahli. Interfacing with proof assistants for domain specific
programming using eventml. In 10th International Workshop On User
Interfaces for Theorem Provers, 2012.

[11] Vincent Rahli, David Guaspari, Mark Bickford, and Robert
Constable. Formal Specification, Verification, and Implementation of
Fault-Tolerant Systems using EventML. In Proceedings of the 15th
International Workshop on Automated Verification of Critical Systems
(AVoCS 2015), September 2015.

10

	Message sequence diagrams for consensus – (3f+1 case)
	General Process Model (GPM)
	Overview
	Basic Concepts
	Leader Election in a Ring

	Coding 2/3 Consensus

