
CS3110 Spring 2016 Lecture 22:

Distributed Computing with

Functional Processes

Robert Constable

1 Introduction

In the last three lectures, we will look at computing with asynchronous
functional processes in OCaml. PS6 will be on this topic. The Async
package is a feature of OCaml that Jane Street is quite interested in, and
Yaron Minsky from that company will talk to us in Lecture 24 next
Tuesday, May 3.

At Cornell the systems group, the formal methods, and PL groups have
worked closely with each other for over twenty years. The material we will
cover is based on this shared interest. Many of our joint results use
functional programming concepts because proof assistants are especially
well suited to reasoning about functional programs.

In the realm of distributed computing the functional programs include
concepts that we will call functional processes. These are functional
programs that cooperate to solve computing problems. They communicate
asynchronously.

The area of distributed computing is extremely broad and deep. It has
taken many years to isolate the basic concepts, such as causal order,
distributed state machines, virtual synchrony, logical clocks, fault tolerance,
Byzantine fault tolerance, etc. We will focus on the problem of achieving
consensus decisions among a group of processes computing together
asynchronously. This topic is relevant to modern cloud computing and
fundamental “systems theory.”

In particular, we will use a simple consensus protocol, called 2/3 consensus
to illustrate the concepts.

We will briefly discuss a logic for reasoning about protocols called event

1

logic (or the logic of events). This language arose as the formal methods
researchers tried to make logically precise some of the new ideas being
explored by the systems group. In this realm, the notion of co-inductive
(also called co-recursive) types is quite natural and fundamental. Event
logic is also becoming important in cyber physical systems (CPS). as
Abhishek Anand illustrated early in the course (Lecture 10).

2 Leader election in a ring

Recall the problem we posed in Lecture 21, leader election in a ring. The
algorithm is very simple to understand and verify. Each process sends its
unique identifier (uid) to its clockwise neighbor. Each process compares
the uid received with its own uid. If received uid is larger the process
passes it along. Otherwise it drops the uid. The one and only process that
receives its own uid back knows because of the ring structure of the
communication links that its uid is the largest. It declares itself the leader
and sends this information around the ring. (Of course every process can
know this on its own by keeping the list of uids it sees before being
informed). An easy correctness proof is sketched in the notes.

2

4/25/2016

1

Specification for Leader Election in a Ring

2

3

45

6

1

3

Leader Election

In a Ring R of Processes with Unique Identifiers (uid’s)

Specification

Let R be a non-empty list of locations linked in a ring



 

i i ,

i i,

i i

i i i

i

-1

k

 Let n() = dst(out()) the

 Let p() = n () the

 Let d(,j) = k 1. n () = j, the

next location

predecessor location

distance from to

 Note p(j) d(,p(j)) = d(,

.

j

j)-l



Specification, continued

4

 

 

Leader (R,es) == ldr: R. e@ldr. kind(e)=leader &

 i:R. e@i. kind(e)=leader i=ldr

 

  

Theorem R:List(Loc). Ring(R)

 D:Dsys(R). Feasible(D) &

 es: ES. Consistent(D,es). Leader(R,es)







4/25/2016

2

Realizing Leader Election

5

 

Theorem :

 :

 :





 

R List(Loc).Ring(R)

D Dsys(R).Feasible(D).

esConsistent(D,es). LE(R,es) Leader(R,es)

  1

1

Proof: Let then .

 We prove that using three simple lemmas.

  



-

-

m max uid(i)| i R , ldr uid (m)

ldr uid (m)

Lemmas

6

 

 

induction on distance of

Lemma 1. < >

 By .

Lemma 2. < >

to

  

  

i l

i : R. e @ i.kind(e) rcv in(i), vote, ldr

i,j : R. e @ i.kind(e) rcv in(i), vote,j .

dr

 

 

 By .

Le

induction on causal order of even

mma 3.

If , then by property 5,

ts

  

     

  

j ldr d(ldr,j) d(ldr,i)

i : R. e @ i. kind(e) leader i ldr

kind(e) leader v @ i.r

rcv

cv in( 

 

 

< >

Hence, by Lemma 2

but the right disjunct is impossible.

Finally, from property 4, it is enough to know

 < >

which follows from

  

 

i), vote,uid(i) .

i ldr d(ldr,i) d(ldr,i)

e.kind(e) rcv in(ldr), vote, uid(ldr)

Lemma 1.

QED

4/26/2016

1

Voting Approach to Consensus

Suppose a group G of n processes, Pi, decide by
voting. If each Pi collects all n votes into a list L,
and applies some deterministic function f(L), such
as majority value or maximum value, etc., then
consensusis trivial in one step, and the value is
known at each process in the first round –
possibly at very different times.

The problem is much harder because of possible
failures.

Fault Tolerance
Replication is used to ensure system availability in
the presence of faults. Suppose that we assume
that up to f processes in a group G of n might fail,
then how do the processes reach consensus?

The TwoThirds method of consensus is to take n =
3f +1 and collect only 2f+1 votes on each round,
assuming that f processes might have failed.

3 Protocols and Events

Here is our plan. We will illustrate the ideas using consensus protocols.
These are critical to the asynchronous distributed computing used in “the
cloud,” especially at Google, Microsoft, Amazon, the FAA, and the French
ATC system. Research in this area has led to very deep foundational
results such as FLP, distributed state machines, virtual synchrony,
Byzantine fault tolerance, and more.

The topic has also led to new insights about computation beyond
Turing-computability. The key idea is that the communication
infrastructure adds an element of unpredictable choice to computation.
This notion was considered by mathematicians, especially Brouwer, before
it became central in CS. So there is this certain conceptually fundamental
character to these ideas that goes beyond technology, just as the idea of
computability goes beyond any particular formalism for it – Turing
machines, the λ-calculus, general recursive functions, etc.

Requirements of Consensus Task
Use asynchronous message passing to
decide on a value.

6

4/26/2016

3

Logical Properties of Consensus
P1: If all inputs are unanimous with value v, then any

decision must have value v.

All v:T. (If All e:E(Input). Input(e) = v then
All e:E(Decide). Decide(e) = v)

Input and Decide are event classes that effectively
partition the events and assign values to them. The
events are points in abstract space/time at which
“information flows.” More about this just below.

Logical Properties continued
P2: All decided values are input values.

All e:E(Decide). Exists e’:E(Input).

e’ < e & Decide(e) = Input(e’)

We can see that P2 will imply P1, so we take
P2 as part of the requirements.

4/26/2016

4

Further Requirements for Consensus

The key safety property of consensus is that
all decisions agree.

P3: Any two decisions have the same value.

This is called agreement.

All e1,e2: E(Decide). Decide(e1) = Decide(e2).

Liveness
If f processes eventually fail, then our design
will work because if f have all failed by round r,
then at round r+1, all alive processes will see
the same 2f+1 values in the list L, and thus
they will all vote for v’ = f(L), so in round r+2
the values will be unanimous which will
trigger a decide event.

4/26/2016

5

Example for f = 1, n = 4
Here is a sample of voting in the case T = {0,1}.

0 0 1 1 inputs

0 01_ 001_ 001_ _011 collected votes

0 0 0 1 next vote

000_ 00_1 0_01 _001

0 0 0 0
where f is majority voting, first vote is input,
round numbers omitted.

Pseudo-code for 2/3 Consensus
Begin r:Nat, decided_i, vote_i: Bool,
r = 0, decided_i = false, vi = input to Pi; vote_i = vi

Until decided_i do:
1. r := r+1
2. Broadcast vote <r,vote_i> to group G
3. Collect 2f+1 round r votes in list L
4. vote_i := majority(L)
5. If unanimous(L) then decided_i := true
End

4/26/2016

6

Safety Example
We can see in the f = 1 example that once a
process Pi receives 2/3 unanimous values, say
0, it is not possible for another process to over
turn the majority decision.

Indeed this is a general property of a 2/3
majority, the remaining 1/3 cannot overturn it
even if they band together on every vote.

Safety Continued

•In the general case when voting is not by majority but using f(L) and
the type of values is discrete, we know that if any process Pi sees
unanimous value v in L, then any other process Pj seeing a unanimous
value v’ will

• see the same value, i.e. v = v’ because the two lists, Li and Lj at round r
must share a value, that is they intersect.

4/26/2016

7

Executing Systems of Processes

The environment chooses which messages
will be delivered. A run of a system is an
unbounded sequence of pairs <sys,choice>.

From a run of a system, we can build event
structures with locations and causal order.

Event Orderings over Runs

An event ordering of a run R is a collection of
events E, a function loc giving the location of
the event, a well founded causal order < on
events, and info, the information conveyed by
an event: <E, loc, <, info>

The events are pairs <x,n> at which location x
receives a message at step n of the run.

4/26/2016

8

Constructive FLP

•Theorem (Fischer/Lynch/Paterson, 1985): Given any deterministic
non-blocking consensus procedure P with two or more processes
tolerating a single failure, P allows non-terminating executions.

4 Message sequence diagrams and the logic of
events

Protocol designers use Message Sequence Diagrams to think about their
task. They are used to illustrate both the specification of the task and its
solution as a distributed protocol. We will examine these diagrams in the
next lecture.

5 Preview of Lecture 23

We will examine a logical specification of the 2/3 consensus protocol and
an informal proof. Then we will examine the use of functional processes to
code consensus protocols and support precise formal reasoning about them.

13

	Introduction
	Leader election in a ring
	Protocols and Events
	Message sequence diagrams and the logic of events
	Preview of Lecture 23

