
CS3110 Spring 2016 Lecture 21:

Elements of Type Theory

Robert Constable

Topics

1. The logic problem – small modification suggested by the class to
show a type with an unbounded number of programs. OCaml
solution is given.

2. Comments on the “world’s simplest” halting problem and a closer
look at types.

item The idea of “set types” such as {x : int|x ≥ 0} and other
dependent types. The “propositions as types” idea.

3. Introduction to asynchronous computing and protocols.

1 Logic problem

This example reveals why any “programmable type” is logically true. The
program is providing computational evidence that the proposition coded by
the type is “true.”

fun x -> fun g -> fun f -> g(g(f)) x ;;

- : ’a -> ((’a -> ’b) -> ’a -> ’b) -> (’a -> ’b) -> ’b = <fun>

fun x -> fun g -> fun f -> g(g(g (f))) x ;;

- : ’a -> ((’a -> ’b) -> ’a -> ’b) -> (’a -> ’b) -> ’b = <fun>

fun x -> fun g -> fun f -> g(g(g(g (f)))) x ;;

- : ’a -> ((’a -> ’b) -> ’a -> ’b) -> (’a -> ’b) -> ’b = <fun>

1

Comments on the halting problem example

When we think of the type unit as a set of elements, we see it as {()},
and it is hard to imagine how there could be more than one element in the
type. But all OCaml types are partial types. This means that the diverging
computation ⊥ belongs to every type, including unit. So at a minimum,
we need to see the type as having ⊥, the diverging element. This code
makes that clear:

let rec count n = if n = 0 then () else count (n-1) ;;

val count : int -> unit = <fun>

If we conceive of these types in a constructive or computational way, we
cannot say “For all x in the type unit, x = () or x =⊥.”

We do not say this, because in a computational way of thinking about
“or,” as in “for all natural numbers n, n is either prime or not prime,” we
intend that we can tell. This means we cannot think of the partial type for
unit, written as unit in Nuprl, as having only ⊥ and () as members.

A better way to see unit is perhaps as consisting of many computations
given by expressions, say e1, e2, e3, .. For some of them we know ei = ();
for some we know ej =⊥; for some we know ei = ek.

One new idea for enriching our analysis is related to PS5. We can measure
the computational complexity of reduction of expression e to ().

2 Unsolvability for halting in OCaml

To make the ideas clearer, in this section we use int for the OCaml type
and int for the subtype of converging elements of int.

int int

0, 1, -1, 2, -2,... ⊥, 0, 1, -1, 2, -2, ...
As well as expressions,
ei that reduce to these
values.

Fact 1. There is no OCaml function h : int→bool such that
h(n) = true iff n ↓. (p.97)

This proof follows the example from Lecture 20 that we cannot decide
whether an element of unit converges. This proof method applies to any
type T with some t0 ∈ T.

2

4/21/2016

1

Computability in the Object Theory

Here is how Computational Type Theory (CTT) defines
recursive functions. Consider the 3x+1 function with
natural number inputs.

f(x) = if x=0 then 1

else if even(x) then f(x/2)

else f(3x+1)

fi

fi

Using Lambda Notation
f = λ(x. if x=0 then 1

else if even(x) then f(x/2)
else f(3x+1))

Here is a related term with function input f

λ(f. λ(x. if x=0 then 1
else if even(x) then f(x/2)

else f(3x+1)))

The recursive function is computed using this term.

4/21/2016

2

Defining Recursive Functions in CTT

fix(λ(f. λ(x. if x=0 then 1

else if even(x) then f(x/2)

else f(3x+1)

fi

fi)))

Recursion in General

f(x) = F(f,x) is a recursive definition, also

f = λ(x.F(f,x)) is another expression of it, and the CTT
definition is:

fix(λ(f. λ(x. F(f,x)))

which reduces in one step to:

λ(x.F(fix(λ(f. λ(x. F(f,x)))),x))

by substituting the fix term for f in λ(x.F(f,x)) .

4/21/2016

3

Non-terminating Computations

CTT defines all general recursive functions, hence
non-terminating ones such as this

fix(λ(x.x))

which in one reduction step reduces to itself!

This system of computation in the object language is
a simple functional programming language.

Partial Functions

The concept of a partial function is an example of how challenging it
is to include all computation in the object theory. It is also key to
including unsolvability results with a minimum effort; the halting
problem and related concepts are fundamentally about whether
computations converge, and in type theory this is the essence of
partiality. For example, we do not know that the 3x+1 function
belongs to the type N -> N.

4/21/2016

4

Partial Functions

We do however know that the 3x+1 function, call it f in this slide, is a
partial function from numbers to numbers, thus for any n, f(n) is a
number if it converges (halts).

In CTT we say that a value a belongs to the bar type Ā provided that
it belongs to A if it converges. So f belongs to A → Ā for Ā = N.

Unsolvable Problems

It is remarkable that we can prove that there is no function in CTT
that can solve the convergence problem for elements of basic bar
types.

We will show this for non empty type Ā with element ā that
converges in A for basic types such as Z, N, list(A), etc. We rely on the
typing that if F maps Ā to Ā, then fix(F) is in Ā.

4/21/2016

5

Unsolvable Problems

Suppose there is a function h that decides halting. Define the
following element of Ā:

d = fix(λ(x. if h(x) then ↑ else ā fi))

where ↑ is a diverging element, say fix(λ(x.x)).

Now we ask for the value of h(d) and find a contradiction as follows:

(In the lecture notes, we use  for .)

Generalized Halting Problem

Suppose that h(d) = t, then d converges, but
according to its definition, the result is the diverging
computation ↑ because by computing the fix term
for one step, we reduce

d = fix(λ(x. if h(x) then ↑ else ā fi))

to d = if h(d) then ↑ else ā fi .

If hd(d) = f, then we see that d converges to ā.

New idea

What recursive types make sense? OCaml allows this type:

type int maps = |Base of int | Fun of (int -> int maps) ;;

Fun(fun x → (Fun(fun y → x))) ∈ int maps

Can there be a type like this that makes “logical sense”?

In set theory, we can’t have a set

(int → int) = int ∪ (int → int) → (int → int).

8

4/21/2016

1

Suppose that we have evidence types [A] for
the atomic propositions A. Here is how to
construct evidence for compound formulas
in a model M.

Propositional Evidence

[A & B] == [A] x [B]
[A v B] == [A] + [B]
[A => B] == [A] [B]
[false] ==  (the empty set)
[A] == [A] => 

Evidence for Quantified Propositions

[All x. B(x)] == x: UM  [B(x)]

[Exists y. B(y)] == y: UM x [B(y)]

The evidence types for quantified formulas use
the dependent types over the universe UM of
the model M.

4/21/2016

1

Specification for Leader Election in a Ring

2

3

45

6

1

18

Leader Election

In a Ring R of Processes with Unique Identifiers (uid’s)

Specification

Let R be a non-empty list of locations linked in a ring



 

i i ,

i i,

i i

i i i

i

-1

k

 Let n() = dst(out()) the

 Let p() = n () the

 Let d(,j) = k 1. n () = j, the

next location

predecessor location

distance from to

 Note p(j) d(,p(j)) = d(,

.

j

j)-l



Specification, continued

19

 

 

Leader (R,es) == ldr: R. e@ldr. kind(e)=leader &

 i:R. e@i. kind(e)=leader i=ldr

 

  

Theorem R:List(Loc). Ring(R)

 D:Dsys(R). Feasible(D) &

 es: ES. Consistent(D,es). Leader(R,es)







	Logic problem
	Unsolvability for halting in OCaml

