
CS3110 Spring 2016 Lecture 20:

Fixed Point Operators

Robert Constable

Only four more lectures on new material plus one guest and two course
summary/exam preparation lectures.

Topics

1. Plans for remaining seven lectures 20-26.

2. Fixed point operators on functionals: fix, efix.

3. Fixed point operators on type constructing functions – lazy fixed
points, fix.

4. Provably unsolvable OCaml tasks.

1 Plans for remaining lectures

Tues. April 19 Lecture 20 Recursion with fix, efix, evaluators, halting.
Thurs. April 21 Lecture 21 Asynchronous computation protocols.

Tues. April 26 Lecture 22 Asynchronous protocols – consensus.
Thurs. April 28 Lecture 23 Specifying protocols.

Tues. May 3 Lecture 24 Guest lecture by Yaron Minskey from Jane Street.
Thurs. May 5 Lecture 25 Course summary.

Tues. May 10 Lecture 26 (Last) Final exam prep.

Tues. May 17 Final exam 9:00-11:00 am. Uris Hall G01

1

2 Fixed point operators on functionals

In Lecture 19 we briefly discussed fixed point operators in relating OCaml
to type theory. We mentioned the idea of co-lists and co-trees. These are
examples of co-recursive types. They can be used to define recursive types,
but OCaml does not allow co-inductive types.

The co-lists and co-trees were defined using a fixed point operator, fix.
We will see that this operator provides an excellent account of recursion.
This account does not require discussing how compilers implement
recursion using “stacks.” The account also reveals that there are at least
two kinds of “fixed point” operators.

Let us look at a recursive function we studied carefully, the integer square
root from Lecture 9 on March 1.

let rec sqrt (n : int) : int =

if n <= 0 then 0

else let r = sqrt(n-1) in

if (r+1)*(r+1) <= n then r+1 else r

This computes the integer square root of a non-negative integer, e.g. a
natural number n in the mathematical type N = {0, 1, 2, ...}.
We can understand this function in a particularly interesting way if we
generalize it to a functional. Consider this function:

fun f -> fun n -> if n <= 0 then 0

else let r = f(n-1) in

if (r+1)*(r+1) <= n then r+1 else r

This function has two inputs, the first is a function, f , the second a
number, n. This looks nicer with λ-notation:

λ(f.λ(n. if n ≤ 0 then 0
else if f(n− 1) ∗ f(n− 1) ≤ n then f(n− 1) + 1
else f(n− 1)))

The type of function is (nat → nat) → nat → nat1, which is the same
as (nat → nat) → (nat → nat). This kind of function is called a
functional. We’ll use a capital F to denote it:

1We use the type nat here although OCaml does not have this type.

2

F : (nat → nat) → (nat → nat)

so F(f) ∈ nat → nat, if f ∈ nat → nat.

These functionals are a natural way to compute and to understand
recursive functions. Below we explain them “operationally” and
“denotationally.”

3 Fix

(a.) Operational

Operationally, we define an operation called fix that captures the
way we compute with recursive functions.

Given λ(f.λ(x.body(f, x))), we compute fix(λ(f.λ(x.body(f, x))))
by one step to λ(x.body(fix(), x)). We use fix() to abbreviate the
whole expression fix(λ(f.λ(x.body(f, x)))).

We are now able to apply λ(x.) to a value, say
0 to get 0
1 to get if fix() 0 ∗ fix() 0 ≤ n then (fix() 0) + 1 else fix() 0

(b.) Denotational

Another way to understand the fix operator is to look at properties
of the computable functional F : (nat → nat) → (nat → nat).

What if we apply F to a function that is everywhere undefined, say
f0 such that f0(n) is undefined for every n?

Can we say anything about F (f0)? It reduces to

λ(n. if n ≤ 0 then 0 else if f0(n− 1)× f0(n− 1)....) 0

This application of the value of the functional produces the value 0
when applied to 0.

Call this function f1 and notice that it extends f0.
f0(n) = undefined for all n
f1(0) = 0
f1(1) = undefined, as are f1(n), n > 0

What happens to fix() f1?

In the standard account of the undefined applications, we say
f0(0) =⊥, f0(1) =⊥, ... , f0(n) =⊥ for all n. We think of ⊥ as an

3

“undefined value.” We can consider it to be a “diverging value,”
something less defined than any numerical output.

As we apply F to these “partial functions,” we created “slightly less
undefined functions.” In the limit, we “converge” to the integer
square root function.

Consider the sequence of applications

f0(x) = ⊥ for all x
f1(x) = F (f0)(x)
f2(x) = F (f1)(x)

...
fn(x) = F (fn−1)(x).

In the “limit” the function defined, call it fω, is the integer square
root function. So we have seen two ways to explain the meaning of
recursively defined functions. We can prove that these lead to the
same computable function.

We will adopt a simple computation rule for fix to explain recursion.
For this to work, we need that function application is lazy. So this
approach does not explain OCaml recursive functions. To do that we
need an eager fixed point operator.

4 An eager fixed point operator – efix

let rec efix f x = f (efix f) x vs let rec fix f = f (fix f)

((α→ β)→ α→ β)→ α→ β (α→ α)→ α
((nat → nat) → nat → nat) → (nat → nat) ((nat → nat) → (nat → nat)) → (nat → nat)

((α→ β)︸ ︷︷ ︸
f

→ α︸︷︷︸
x
→ β︸︷︷︸

x

)→ (nat→ nat)

f rt = λ(f.λ(n. if n = 0 then 0
else let r = f(n− 1) in
if (r + 1) ∗ (r + 1) ≤ n then r + 1 else r))

Abbreviate using

body(n, f) == if n = 0 then 0
else let r = f(n− 1) in
if (r + 1)2 ≤ n then r + 1 else r

4

sqrt2 = efix(f rt) x expand efix
= f rt(efix f rt) x

Substitute definition of f rt using body(n, f) abbreviation to get
f rt(efix f rt).

λ(f.λ(n.body(n, f)))(efix(f rt)) x

Substitute efix(f rt) for f in function application.

λ(n.body(n, efix(f rt))) x

Expand body and substitute x for n.

if x = 0 then 0
else let r = efix(f rt) x− 1 in

if (r + 1)2 ≤ n then r + 1 else r

We now see the computational pattern as we reduce x− 1 to x− 2 to x− 3
...until we reach 0.

efix(λ(f.λ(n.body(n, f))))x = (λ(f.λ(n.body(n, f))(efix(f rt))) x

efix(λ(f.λ(n.body(n, f)))) exp
= (λ(f.λ(n.body(n, f))(efix(f rt))) exp e.g. exp ↓ 17.

λ(n.body(n, efix(f rt))) 17

fix(λ(f.λ(n.body(n, f)))) exp
λ(n.body(n, fix())) exp ↓

body(exp, fix())
if exp = 0 then 0
else r = f exp− 1

The implementation of this in OCaml can be found on the last page.

The halting problem using fix

Suppose there were a halting detector, say h : unit→ bool such that
h(x) = true iff x ↓, i.e. h(x) has value true if x converges to (), the
canonical element of unit.

5

For example:

let rec count(n) =

if n = 0 then ()

else count(n-1)

where
h(()) = true

h(count(−1)) = ⊥
h(count(0)) = ().

Define d = fix(λ(x. if h(x) then ⊥ else ())).

What is the value of h(d)?

If h(d) = t, then d converges, but by definition if h(d) =true, then d
diverges! If h(d) = false, then by its definition, d converges.

We conclude that there is no halting function.

Logic

Is this expression programmable?
If so, how many different programs can be written for it?

α→ ((α→ α)→ α)→ (α→ α)→ α

With a small adjustment we can write an expression that can produce an
unbounded number of programs:

α→ ((α→ α)→ (α→ α))→ (α→ α)→ α

6

let rec efix f x = f (efix f) x ;;

val efix : ((’a -> ’b) -> ’a -> ’b) -> ’a -> ’b = <fun>

let frt = fun f -> fun n -> if n = 0 then 0

else let r = f (n-1) in if (r+1) * (r+1) <= n

then r +1

else r ;;

val frt : (int -> int) -> int -> int = <fun>

#

let sqrt x = efix frt x ;;

val sqrt : int -> int = <fun>

sqrt 17 ;;

- : int = 4

sqrt 101 ;;

- : int = 10

let rec fix f = f (fix f) ;;

val fix : (’a -> ’a) -> ’a = <fun>

let div = fix (fun x ->x) ;;

let rec fix f = f (fix f) ;;

val fix : (’a -> ’a) -> ’a = <fun>

let div = fix (fun x -> x) ;;

Stack overflow during evaluation (looping recursion?).

#

let h = (fun x -> (if x = () then true else false)) ;;

val h : unit -> bool = <fun>

#

7

	Plans for remaining lectures
	Fixed point operators on functionals
	Fix
	An eager fixed point operator – efix

