
CS3110 Spring 2016 Lecture 2:
Syntax and Semantics (2/2)

Robert Constable

Abstract

1 Lecture Outline

1. Lecture Outline

2. OCaml Syntax

3. Mathematical Semantics for Programming Languages

4. References

2 OCaml Syntax

The OCaml alphabet The first step in defining any language precisely,
including natural languages, programming languages, and formal logics, is to
present its syntax. The syntax determines precisely what strings of characters
are programs and what strings are data. The first step is to specify the
alphabet of symbols used, the “letters of the alphabet of the programming
language.” Let ΣOCaml be this alphabet. In this section we use Σ for short.
We use exactly 94 symbols (tokens, characters) which are the 52 letters of the
English alphabet, 26 lower case and 26 upper case, and 32 special symbols
from the standard key board, and ten digits, 0 to 9. These are available on
standard key boards.

In words the thirty two special symbols are these: exclamation point (!),
at-sign (@), pound sign (]), dollar sign ($), percent sign (asterisk (*), right

1

parenthesis, left parenthesis, underscore, hyphen (-), plus (+), equal (=),
right curly bracket, left curly bracket, right brace (]), left brace ([), vertical
line (|), colon (:), semicolon (;), quote (”), apostrophe (’), less (¡), greater
(¿), comma, period, question mark (?), tilde (∼), backslash, front slash (/),
reverse apostrophe (‘).

Latex uses some of these characters to control the type setting, but the
names are quite standard. Some have nicknames, such as “squiggle” for tilde.
Hyphen is also a minus sign. The pound sign is sometimes called a “hash”,
and it is not the sign for the UK currency. Here is a use of square brackets,
[...], and here is a use of curly brackets {...}.

The full set of OCaml symbols are from the ISO8859-1 character set
with 128 standard characters and 127 others, many are English letters with
diacritical marks to spell words in Western European languages, e.g ö, umlaut
o. OCaml implementations typically support the standard 94 symbols plus
51 accented letters such as, ö.

Latex shows the need for many many more special symbols as does uni-
code. There a many hundreds of special characters that can be printed with
Latex and with unicode, and in the future such symbols will be included in
the atomic symbols of programming languages. So we might have an alpha-
bet Σ with thousands of letters. Languages like Chinese could show us the
limits of comprehension for such rich symbol sets.

OCaml words and expressions Finite strings of the basic symbols we will
call expressions or terms. They are an analogue of words in English, even
though many are nonsense words, like abkajeky in English. The set of words
is denoted Σ+

OCaml, all finite strings of symbols, even nonsense ones such as
**1Ab-!. The space (character 0020) is not part of any word in the language
nor is a line break or carriage return.

Unlike with natural languages, there is no dictionary of all known OCaml
words as there seems to be for (almost) all English or French words. However,
there is a dictionary of reserved words such as fun, if, then, else, int, float,
char, string, and so forth. There is a largest reserve word (what is it?) but
no “largest word” such as “supercalifragilisticexpialidocious” in an OCaml
“dictionary”, though memory requirements on machines place a practical
limit on word length, and in any particular application program there is a
list of names of important functions and data types. One can imagine that
each project has a dictionary.

2

OCaml programs and data An OCaml program is simply an OCaml
expression that reduces under the computation rules when applied to a value
or given input. Running a program is evaluating an expression. A value is
an OCaml expression that is irreducible under the computation rules. We
will next look carefully at how to organize the explanation of programs and
data. First a word about the scope of this task.

OCaml is a large industrial strength programming language meant to
help people do serious work in science, education, business, government and
so forth. Like all such languages it is large, complex, and evolving. We aim to
study a subset that is good for teaching important ideas in computer science.
Thus there are many features of OCaml that we will not cover. On the other
hand, we will present a good framework for learning the entire language as
it evolves from year to year as all living languages do.

There is no official OCaml subset for education as has been the case in the
past with large commercial programming languages, e.g. at the time when
PL1 was a widely used language supported by IBM, there was a Cornell
subset called PLC that was widely taught in universities and made Cornell
well known in programming languages.1 The PLC work had an influence on
Milners thinking about ML, see the references in Edinburgh LCF [1], the first
book on ML.

3 Mathematical Semantics for Programming

Languages

A rigorous mathematical method has been developed for precisely defining
how programs execute [10, 8, 3, 9]. The concepts are covered in most modern
textbooks on programming languages [6, 11, 5, 7, 2]. We will use these ideas
to give an account of OCaml semantics. Here is the first key idea of that
semantics.

Definition: We divide the OCaml expressions into two classes, the
canonical expressions and the non-canonical expressions. The canonical ex-
pressions are the values of the language. They are defined as expressions
which are irreducible under the computation rules. This is a concept that

1Many old languages such as COBOL and PL1 are still in use supporting large indus-
trial operations. For mysterious reasons certain languages like C tend to become nearly
“immortal”. Others like FORTRAN continue to evolve and are immortal in that way.
Java, C++, and Lisp might be like that.

3

you need to know for exams and discussions. Sometimes we call these val-
ues constants. This is common terminology for numerical values of which
OCaml has two types, the integers and the floating point numbers which
are approximations of the infinitary real numbers of mathematics. It is not
a word typically used for all of the constants of OCaml, some of which are
functions and types.

3.1 Expressions and values

Simple values as constants The integer constants are 0, 1, -1, 2, -2,
These are constants in decimal notation. They are canonical values because
no computation rules reduce them. There is a limit to their size on either
32 bit machines or 64 bit machines. OCaml supports both sizes. Thus these
numbers are not like the mathematical integers whose value is unbounded
and which thus form an unbounded type.

OCaml does support an implementation of mathematical integers which
in Lisp are called “Bignums.” We will use them later in the course we will
show how to define infinite precision real numbers using big numbers and
thus model the type of mathematical reals R exactly.

The type bool is simpler having only two canonical values, the two Booleans,
true and false; simpler still is the unit type with one value, ().

Structured values – tuples and records Other canonical forms have
structure. For example, (1, 2) is the ordered pair of two integers. This is
a value, and we call it a constant as well, although unlike the boolean true
pairs have structure. OCaml also has n-tuples of values here is a quadruple
or four-tuple, (1, 3, 5, 7). OCaml also has values called records which are like
tuples, but the components are named as in {yr = 2020;mth = 1; day = 20}.

Structured values – functions One of the significant distinguishing fea-
tures of OCaml is that functions are values. They can be supplied as inputs
to other functions and produced as output results of computation. Functions
have the syntactic form fun x → body(x), where x is an identifier denoting
the input value, and body(x) is an OCaml expression that usually includes
x as a subterm, but need not, e.g., fun x→ 0 is the constant function with
value integer 0. The identity function on any data type is fun x→ x.

These function expressions are irreducible, and thus are canonical expres-
sions. When applied to a value, as in (fun x → x)0 we create a reducible

4

term. In this case it reduces to 0. We see that function values can have
considerable internal structure. There is the operator name, fun, an abbre-
viation of the word function. The identifier x is the local name of the input
to the function, and body(x) is its “program” or operation on the potential
data x.

During computation after an input value v is supplied, this value is sub-
stituted for the input variable x resulting in the term body(v). This ex-
pression can be canonical or non-canonical. A value is required to initiate
the evaluation of a function, but the computation of body(v) might not ever
use the value, as in the case of a constant function such as fun x → 0 or
fun x→ (fun y → y).

In the original ML language, now called Classic ML, the function con-
stants have the form \x.body(x) which is close to the mathematical notation
derived from Principia Mathematica and made popular by the American
logician Alonzo Church who defined the lambda calculus where functions are
denoted λx.body(x).

There are many notations for functions used in mathematics. In some
textbooks we see functions written as in sine(x) or log(x) or even x2. This
notation is ambiguous because we might also use the same expression to
denote “the value of the sine function applied to a variable x.”

The programming languages Lisp and Scheme also allow functions as
values. Lisp uses the key word lambda instead of fun. So fun x→ x+ 1 is
written (lambda(x)(x+ 1)).

As mentioned above one of the other basic syntactic forms of OCaml is
the application of a function to an argument. This is written as f a where f is
a function expression and a is another expression. The application operator
is implicit in this notation whereas in some programming languages we see
application written as ap(f ; a) where the operator is explicit.

3.2 Evaluation and reduction rules

The OCaml run time system executes programs that have been compiled
into assembly language. This is in a sense the machine semantics of OCaml
evaluation, but it is too detailed to serve as a mathematical model of com-
putation that we can reason about at a high level. The ML languages have
a semantics at a higher level of reduction rules. These rules are used in
textbooks such as The Definition of Standard ML [4].

Evaluation is defined using reduction rules. These rules tell us how to take

5

a single step of computation. We use a computation system called small step
reduction.

Here is an example of a very simple reduction rule. We first note that
there are two primitive canonical functions, fst and snd, that operate on
ordered pairs, that is on expressions of the form (e1, e2). They are (built-in)
primitive operations.

We want a rule format to tell us that fst(a, b) reduces in n step to a and
snd(a, b) reduces (in m steps) to b. The rules tell us that we can think of
fst as picking out the first element of an ordered pair while snd picks out
the second.Note that in OCaml, when we evaluate the pair (a, b) we reduce
each of a and b to canonical values before selcting a member of the pair.

Rule-fst a ↓ a′, b ↓ b′ ` fst(a, b) ↓ a′
Rule-snd a ↓ a′, b ↓ b′ ` snd(a, b) ↓ b′

Here are rules for the Boolean operators.

Rule Boolean-and (true && false) ↓ false
Rule Boolean-or (true || false) ↓ true

The general rule for the Boolean operators should take arbitrary expres-
sions, say exp1 and exp2 and reveal how those values are computed before
the principal Boolean operator is computed. To express such rules, we need
to state hypotheses about how these expressions are evaluated. Here is the
way OCaml performs the reduction.

Rule Boolean-or-1 exp1 ↓ true ` exp1 || exp2 ↓ true

Rule Boolean-or-2 exp1 ↓ false, exp2 ↓ true ` exp1 || exp2 ↓ true

Rule Boolean-or-3 exp1 ↓ false, exp2 ↓ false ` exp1 || exp2 ↓ false

These Boolean values are used to evaluate conditional expressions.
Rule Conditional-true

bexp ↓ true, exp1 ↓ v1 ` (if bexp then exp1 else exp2) ↓ v1

Exercise: Write the other rule for evaluating the conditional expression.

6

Here is the rule for evaluating function application.
Function Application

exp2 ↓ v2, exp1 ↓ funx − > body(x), body(v2/x) ↓ v3 ` (exp1 exp2) ↓ v3.

Notice the order of evaluation, we evaluate the argument, exp2 first. If
that expression has a value, then we evaluate exp1 and if that evaluates to a
function fun x− > body(x), then we substitute the value v2 for the variable
x in body and evaluate that expression. This is called eager evaluation or
call by value reduction because we eagerly look for the input to the function,
even before we really know that exp1 evaluates to a function.

There is another order of evaluation in programming languages where we
first evaluate exp1 to make sure it is a function, then we substitute exp2 in
for the variable in the body and only evaluate it if that is required by the
body. For example, if the body is just funx − > x then we do not have to
evaluate the input first since the body does not “need it yet.” This is called
lazy evaluation. OCaml supports this style of evaluation as well, but we will
discuss that later.

These simple rules might seem tedious, but they are the basis for a precise
semantics of the language that both people and machines can use to under-
stand programs. By writing down all these rules formally, we create a shared
knowledge base with proof assistants. It would be very good if OCaml had a
complete formal definition of this kind to which we had access. I dont know
of one. We could probably crowdsource its creation if we had the ambition
and the time.

divergence In all of the evaluation rules for OCaml it is entirely possible
that the expression we try to evaluate will diverge, meaning “fail to termi-
nate”. That is, the computation runs on forever until memory is exhausted
or until you get tired of waiting and stop the evaluation process which is “in
a loop.” We can write very simple programs that will loop forever without
using up memory.We sometimes use the symbol ⊥ (called bottom) to denote
a diverging computation.

exceptions Expressions might also just “get stuck” as when we try to apply
a number to another number, as in 5 7 or take the first element of a function
value, e.g. fst(funx − > (x, x)). Such attempts to evaluate an expression
do not make sense and would get stuck if we tried to evaluate them, and in

7

some cases, “raise an exception” as in 2 ∗ true or 1/0, 2 ∗ [0, 1], etc. Some
expressions might execute until the runtime system exhausts all memory, as
in the recursive procedure let rec loop x = loop x.

We will see that the type system helps us avoid expressions whose at-
tempted evaluation would get stuck, but we cannot avoid all such situations,
and later we will discuss computations that cause exceptions.

Exercise: Write a diverging computation, a short non-canonical expres-
sion that diverges. This will be discussed in recitation where you will try
to find the simplest such expression in OCaml. More subtle question, can
there be such an expression that does not consume an unbounded amount of
memory?

References

[1] Michael Gordon, Robin Milner, and Christopher Wadsworth. Edinburgh
LCF: a mechanized logic of computation, volume 78 of Lecture Notes in
Computer Science. Springer-Verlag, NY, 1979.

[2] Robert Harper. Practical Foundations for Programming Languages.
Cambridge University Press, Cambridge, 2013.

[3] Per Martin-Löf. Constructive mathematics and computer programming.
In Proceedings of the Sixth International Congress for Logic, Methodol-
ogy, and Philosophy of Science, pages 153–175, Amsterdam, 1982. North
Holland.

[4] R. Milner, M. Tofte, and R. Harper. The Definition of Standard ML.
The MIT Press, 1991.

[5] John C. Mitchell. Foundations of Programming Languages. MIT Press,
1996.

[6] L. C. Paulson. Standard ML for the Working Programmer. Cambridge
University Press, 1991.

[7] Benjamin C. Pierce. Types and Programming Languages. MIT Press,
2002.

[8] Gordon D. Plotkin. LCF considered as a programming language. Journal
of Theoretical Computer Science, 5:223–255, 1977.

8

[9] Gordon D. Plotkin. A structural approach to operational semantics.
Technical Report DAIMI-FN-19, Aarhus University, Aarhus University,
Computer Science Department, Denmark, 1981.

[10] J.E. Stoy. Denotational Semantics: The Scott-Strachey Approach to
Programming Language Theory. MIT Press, Cambridge, MA, 1977.

[11] G. Winskel. Formal Semantics of Programming Languages. MIT Press,
Cambridge, 1993.

9

