
CS3110 Spring 2016 Lecture 18: Binary

Search Trees

Robert Constable

Note: Yaron Minsky from Jane Street and co-author of Real World OCaml
will give a guest lecture on Tuesday, May 3.

Topics

1. Remarks on “coordinate-free” convex hull algorithm.

– Can have an n2 algorithm, could we do better?

– Donald Knuth wrote a short monograph on convex hull
algorithms and coordinate free computational geometry:
Axioms and Hulls, Springer-Verlag 1992.

2. Elements of Binary Search Trees (BST’s).

– Definition.

– Use as key value store.

– Insert function.

3. Discussion of delete operation in BST’s.

– The idea, examples.

– Code.

– Why is it correct?

– Nuprl proof idea.

4. Splay trees, Red-Black trees, AVL trees and adjusting to the data
statistics – brief remarks.

1



Elements of Binary Search Trees

OCaml definition:

type α bst = Null | Leaf of α | Node of (α bst * α * α bst)

Example:

a0

a`

a`` a`r

ar

ar` arr

This is an example of a recursive or inductive type. It is not defined in
terms of pointers, and the algorithms to process operations on BST’s are
simply recursive functions.

We have already seen lists defined as recursive types. That experience
generalizes to trees. We compute on trees using recursive functions. We
prove properties using induction.

Remarks on proof assistants

The “pointer-free” approach to recursive types is motivated by type theory
and the particular theories proposed by Nuprl and Coq in the early 1980’s,
building on ideas from Russell and Whitehead’s book (3 volumes),
Principia Mathematica. [2, 1]

These mathematical theories examined “strange types” such as
T = N + T → T , in OCaml notation: t = L int | R (t → t).

The proof assistants also introduced co-inductive types such as streams:

α strm = α * (α strm).

An int stream could be this: (2, 3, 5, 7, 11, ...), unending.
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Co-inductive trees are sometimes called spreads. Spreads look like this,
possibly unbounded, upward:
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Binary Search Tree “mechanics”

The typical use of BST’s is to store values and provide rapid access to
them. A common paradigm is a “key-value store,” something like a
dictionary, with every word as the key. We store definitions at the key.

In these lecture notes we use the example provided by Mark Bickford,
storing pairs of an integer and a real; elements of the type (int * real).
The integer is a key for looking up the value, e.g. (3, cosine(3)),
(4, sine(4)), ...

Mark uses a comparison operator cmp : E → E → int where
cmp a b < 0 means a < b
cmp a b > 0 means a > b
cmp a b = 0 means a is equivalent to b.

To say cmp a b = 0 means that we consider a and b to be “equivalent”

Proving properties of a binary search tree

It turns out to be quite difficult to find a clear readable and rigorous
account of why the common operations on BST’s, insert, look-up, and
delete are correct for functional languages. Marck Bickford, whom you
have met, has proved these operations correct using Nuprl. We have
produced the notes so that you can understand such a proof. These notes
are especially important for BST delete, a subtle operation.
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Mark’s proof can be found here (www.nuprl.org/wip/Standard2/tree 1/index).
This is a directory of tree related theories. Proofs related to binary search
trees come after ‘Comment: tree 1 end’. The delete proof can be found at
‘Definition: bs tree delete’. As can be seen from this page, there are many
components - definitions, lemmas, supporting proofs - that are needed
before we are able to prove the delete function.

These lecture notes include expository material that Mark helped prepare,
both for this lecture and for help reading the Nuprl proof.

Reasoning about BST operators

We define the notion of an ordered tree recursively by cases. We take the
tree to be mathematically defined as

bst(E) = null | leaf(E) | node bst(E) E bst(E).

Define x ∈ T for t a bst.

x ∈ null is false
x ∈ leaf(v) iff x = v

x ∈ node(a, v, b) iff (x ∈ a) or (x = v) or (x = b)

We say that a tree t is ordered by the comparison operator cmp, iff

ordered(cmp, null) is true
ordered(cmp, leaf(v)) is true

ordered(cmp, node(a, v, b)) ordered(cmp,a) & ordered(cmp, b)
and for all x ∈ a, cmp(x, v) < 0
and for all x ∈ b, cmp(x, v) > 0

To define the delete operation precisely enough to prove that it is correctly
implemented we need to know that the rightmost element of the tree is the
largest. (See the diagram.)

Examples of deletion done in lecture:

D1. Delete a leaf, e.g. 49, 69, 74.

D2. Delete a one-child node, e.g. 68, 58.

D3. Delete a two-child node, e.g. 57, 52.

We use the strategy of the maximum of the left subtree in Mark’s
proof/algorithm. One could also use the minimum of the right subtree.
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Here is the delete operation using the maximum of the left subtree. We
are deleting x from tree t, using comparison cmp.

let rec delete cmp x t

match t with

Null -> Null

| Leaf(v) -> cmp x v = 0 then Null else Leaf(v)

| node(a,v,b) ->

if cmp x v < 0 then Node(delete cmp x a, v, b) (*delete in left subtree*)

else if cmp x > 0 then Node(a, v, delete cmp x b) (*delete in right subtree*)

else if isnull a then b

else let m, a’ = treemax v a in Node(a’, m, b)

v

a b
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Appendix: Notes and code from Mark Bickford

CS3110 Spring 2016: Binary Search Tree (BST) datatype

bs_tree(E) = null

| leaf(E)

| node bs_tree(E) E bs_tree(E)

We can put data of any type E in our binary search tree. So, for example,
E could be (int * real) which we can think of as a key-value pair where the
int is the key and the real is the value. In such a case we can order the keys,
but there may be no computable ordering on the values.

comparison operator To order the values of type E, we need a com-
putable comparison operator. For example, when E is (int * real) and a =
(3, cosine(3)) and b = (4, sine(7)) we see that the key of a is less than the
key of b because (3 − 4) < 0, even though we might not know easily which
of the reals is smaller.

In general we suppose that there is a comparison cmp of type E → E →
int such that cmp a b < 0 means that a is “less than” b and cmp a b >
0 means that a is “greater than” b while cmp a b = 0 means that a is
“equivalent to” b.

The comparison cmp should satisfy these properties for all a, b, c ∈ E:

cmp(a, b) = −cmp(b, a) (antisymmetry)

cmp(a, b) ≥ 0 and cmp(b, c) ≥ 0⇒ cmp(a, c) ≥ 0 (transitivity)

(cmp(a, b) = 0⇒ cmp(a, c) = cmp(b, c) (congruence)

For example, on type E = (int * real) the comparison

cmp (x,r) (y, s) = x-y

satisfies these three properties.
Notice that cmp (x, r) (x, s) = 0, so in general cmp(a, b)=0 does not

imply that a = b. In general, cmp(a, b)=0 only means that we consider a
and b equivalent for the purpose of lookup, insert, and delete in our binary
search tree.
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ordered tree We define x ∈ t recursively by cases:

x ∈ null = false

x ∈ leaf(v) = (x = v)

x ∈ node(a, v, b) = (x ∈ a) or (x = v) or (x ∈ b)

Then we define, recursively by cases, when tree t is ordered by comparison
cmp

ordered(cmp, null) = true

ordered(cmp, leaf(v)) = true

ordered(cmp, node(a, v, b)) = ordered(cmp, a) and ordered(cmp, b)

and, for all x ∈ a, cmp(x, v) < 0

and, for all x ∈ b, cmp(x, v) > 0

Notice that if tree t is ordered, and x is in type E, then there can be at
most one element v ∈ t for which cmp(x, v) = 0.

max of ordered tree The maximum member of an ordered tree is the
“rightmost” member of the tree. If the tree is null then it does not have a
maximum member, so we have to take some care. In one pass of a recursive
function we can find the maximum member m of a tree t and also return the
tree t′, which is the result of deleting m from t. To handle the case of the
null tree, we use a default value d for the maximum.

treemax(d, null) = (d, null)

treemax(d, leaf(v)) = (v, null)

treemax(d, node(a, v, b)) = if null(b) then (v, a)

else let m, b′ = treemax(d, b) in (m,node(a, v, b′))

deleting from a binary search tree Deleting element x from an ordered
tree t means removing from the tree any element v ∈ t for which
cmp(x, v) = 0 – there can be at most one such element v to remove. Here is
how we do it:

delete(cmp, x, null) = null

delete(cmp, x, leaf(v)) = if cmp(x, v) = 0 then null else leaf(v)

delete(cmp, x, node(a, v, b)) = if cmp(x, v) < 0 then node(delete(cmp, x, a), v, b)

else if cmp(x, v) > 0 then node(a, v, delete(cmp, x, b)

else if null(a) then b

else let m.a′ = treemax(d, a) in node(a′,m, b)

2



OCaml code

type ’a bstree = Null | Leaf of ’a | Node of (’a bstree) * ’a * (’a bstree)

let isnull t = match t with

Null -> true

| Leaf(v) -> false

| Node(a,v,b) -> false

(* lookup x in tree t using comparison cmp: return option *)

let rec lookup cmp x t =

match t with

Null -> None

| Leaf(v) -> if cmp x v = 0 then Some(v) else None

| Node(a,v,b) -> let c = cmp x v in

if c < 0 then lookup cmp x a

else if c > 0 then lookup cmp x b

else Some(v)

let rec treemax d t =

match t with

Null -> d, Null

| Leaf(v) -> v, Null

| Node(a,v,b) -> if isnull b then v,a else

let m,b’ = treemax d b in

m, Node(a, v, b’)

let rec delete cmp x t =

match t with

Null -> Null

| Leaf(v) -> if cmp x v = 0 then Null else Leaf(v)

| Node(a,v,b) ->

if cmp x v < 0 then Node(delete cmp x a, v, b)

else if cmp x v > 0 then Node(a, v, delete cmp x b)

else if isnull a then b

else let m,a’ = treemax v a in

Node(a’, m, b )
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let rec insert cmp x t =

match t with

Null -> Leaf(x)

| Leaf(v) -> let c = cmp x v in

if c < 0 then Node(Leaf(x),v, Null)

else if c > 0 then Node(Null,v,Leaf(x))

else Leaf(x)

| Node(a,v,b) ->

let c = cmp x v in

if c < 0 then Node(insert cmp x a, v, b)

else if c > 0 then Node(a, v, insert cmp x b)

else Node(a,x,b)

(* For (int bstree) we can use the comparison (fun x y -> x-y) *)

let insert_int = insert (fun x y -> x-y)

let delete_int = delete (fun x y -> x-y)

let lookup_int = lookup (fun x y -> x-y)
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