
CS3110 Spring 2016 Lecture 17:

Computational Geometry Algorithms

Continued

Robert Constable

1 Lecture Plan

1. Another OCaml logic question: are these specifications
programmable? Explain.

• (α→ β)→ ∼ (α→ ∼ β)

• α→ β → ∼ (α→ ∼ β)

2. How is CG used?

– Computer graphics/vision

– Robotics/CPS/pattern recognition/tracking

– Computational biology (URMS - unit vector RMS)/chemistry

3. When we use numerical methods, e.g. floats, robustness becomes a
problem as the textbooks indicate.

Numerical stability.

4. Numerical methods for convex hull.

Look at a numerical version of the incremental algorithm from de
Berg Chapter 1.
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Convex Hull Algorithm

From de Berg et al. pages 6-8. (This algorithm is similar to the “Jarvis
March” algorithm from Cormen pages 1037-1038.)

We now use real numbers and “coordinate geometry” to find the convex
hull of a set of points. This algorithm is similar to the problem on PS4.

Theorem: Finding the Convex Hull.

Let P be a list of n points in the Euclidean plane represented as distinct
pairs of constructive real numbers.

We can find a sublist of P listing all and only the points of the convex hull
of the points on P .

Proof

We give the constructive content of the claim and an informal account that
this is the correct list of points.

1. Sort the n points of p by their x-coordinate.* There can be multiple
points with the same x-coordinate.

We first build the upper hull from left to right. We start with the
first two points, P1, P2. Note, P1 6= P2 but they might have the same
x-coordinate. Pick P1 as the lowest.

*Sort in ascending order.1

2. Now consider points P3, P4, ... starting with i = 3 in building the
upper-hull. For points P3 to Pn, while upper hull contains more than
2 points and the last three points do not make a right turn,

(eg. not

.
P1

.
P2

.
P2

) delete the middle point. This computes the
upper hull. Now put points Pn, Pn−1 into a list for the lower hull
and use the same method to compute the lower hull, from Pn−2 to P1.

3. Finally remove the first and last points of the lower hull list, to avoid
duplicates, and return the combined lists, upper hull appended to
lower hull

1Note as well: The Graham Scan algorithm in PS4 Exercise 2 page 3 is
NOT the same as the convex hull algorithm from Lecture 17. Graham Scan
starts with a point with the lowest y coordinate and sorts the other points
by increasing angle. In lecture we started with the lowest x coordinate and
sorted by the value of the x-coordinate.
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This finishes the construction. It is easy to see that all points are in the
convex hull and no points of the hull are missing. See proof in de Berg.

Signed Area

There are several ways to determine whether points make a left or a right
turn. The most numerically simple is to us the signed area test.

area positive (+) then turns right
area negative (-) then turns left

the equation in PS4 implements the sign test (Exercise 3)

Signed area of a triangle

.
a

b

.(a, b)

. (c, d)

d

.
c

c− ee− a

.(e, f)

f

.
e

Tri

T2T1

The area (signed) of the triangle with base (a, b) to (c, d).

Tri

The trapezoid has area
(b+ d)(c− a)

2
.

The two smaller trapezoids, T1, T2 have areas:

T1 =
(b+ f)(e− a)

2
T2 =

(f + d)(c− e)
2

Hence the area of triangle Tri is
1
2((b+ d)(c− a)− (b+ f)(e− a)− (f + d)(c− e))

= −1
2((ad+ be+ cf − ed− fa− bc))
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Note, the determinant is

∣∣∣∣∣∣
a b 1
c d 1
e f 1

∣∣∣∣∣∣ = (ad+ be+ cf − ed− fa− bc).
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Section 1.1
AN EXAMPLE: CONVEX HULLS

left of the line through p and q, it can also happen that it lies on this line. What
should we do then? This is what we call a degenerate case, or a degeneracy for
short. We prefer to ignore such situations when we first think about a problem,
so that we don’t get confused when we try to figure out the geometric properties
of a problem. However, these situations do arise in practice. For instance, if
we create the points by clicking on a screen with a mouse, all points will have
small integer coordinates, and it is quite likely that we will create three points
on a line.

To make the algorithm correct in the presence of degeneracies we must
reformulate the criterion above as follows: a directed edge

→
pq is an edge of

CH(P) if and only if all other points r ∈ P lie either strictly to the right of the
directed line through p and q, or they lie on the open line segment pq. (We
assume that there are no coinciding points in P.) So we have to replace line 5 of
the algorithm by this more complicated test.

We have been ignoring another important issue that can influence the correctness
of the result of our algorithm. We implicitly assumed that we can somehow
test exactly whether a point lies to the right or to the left of a given line. This
is not necessarily true: if the points are given in floating point coordinates and
the computations are done using floating point arithmetic, then there will be
rounding errors that may distort the outcome of tests.

p

q

r

p

q

r

Imagine that there are three points p, q, and r, that are nearly collinear, and
that all other points lie far to the right of them. Our algorithm tests the pairs
(p,q), (r,q), and (p,r). Since these points are nearly collinear, it is possible that
the rounding errors lead us to decide that r lies to the right of the line from p to
q, that p lies to the right of the line from r to q, and that q lies to the right of the
line from p to r. Of course this is geometrically impossible—but the floating
point arithmetic doesn’t know that! In this case the algorithm will accept all
three edges. Even worse, all three tests could give the opposite answer, in which
case the algorithm rejects all three edges, leading to a gap in the boundary of
the convex hull. And this leads to a serious problem when we try to construct
the sorted list of convex hull vertices in the last step of our algorithm. This step
assumes that there is exactly one edge starting in every convex hull vertex, and
exactly one edge ending there. Due to the rounding errors there can suddenly be
two, or no, edges starting in vertex p. This can cause the program implementing
our simple algorithm to crash, since the last step has not been designed to deal
with such inconsistent data.

Although we have proven the algorithm to be correct and to handle all
special cases, it is not robust: small errors in the computations can make it
fail in completely unexpected ways. The problem is that we have proven the
correctness assuming that we can compute exactly with real numbers.

We have designed our first geometric algorithm. It computes the convex hull
of a set of points in the plane. However, it is quite slow—its running time is
O(n3)—, it deals with degenerate cases in an awkward way, and it is not robust.
We should try to do better. 5



Chapter 1
COMPUTATIONAL GEOMETRY

To this end we apply a standard algorithmic design technique: we will
develop an incremental algorithm. This means that we will add the points in P
one by one, updating our solution after each addition. We give this incremental
approach a geometric flavor by adding the points from left to right. So we first
sort the points by x-coordinate, obtaining a sorted sequence p1, . . . , pn, and then
we add them in that order. Because we are working from left to right, it would
be convenient if the convex hull vertices were also ordered from left to right
as they occur along the boundary. But this is not the case. Therefore we first

p1
pn

upper hull

lower hull

compute only those convex hull vertices that lie on the upper hull, which is the
part of the convex hull running from the leftmost point p1 to the rightmost point
pn when the vertices are listed in clockwise order. In other words, the upper
hull contains the convex hull edges bounding the convex hull from above. In a
second scan, which is performed from right to left, we compute the remaining
part of the convex hull, the lower hull.

The basic step in the incremental algorithm is the update of the upper hull
after adding a point pi. In other words, given the upper hull of the points
p1, . . . , pi−1, we have to compute the upper hull of p1, . . . , pi. This can be done
as follows. When we walk around the boundary of a polygon in clockwise order,
we make a turn at every vertex. For an arbitrary polygon this can be both a
right turn and a left turn, but for a convex polygon every turn must be a right
turn. This suggests handling the addition of pi in the following way. Let Lupper

pi

points deleted

be a list that stores the upper vertices in left-to-right order. We first append pi
to Lupper. This is correct because pi is the rightmost point of the ones added so
far, so it must be on the upper hull. Next, we check whether the last three points
in Lupper make a right turn. If this is the case there is nothing more to do; Lupper
contains the vertices of the upper hull of p1, . . . , pi, and we can proceed to the
next point, pi+1. But if the last three points make a left turn, we have to delete
the middle one from the upper hull. In this case we are not finished yet: it could
be that the new last three points still do not make a right turn, in which case we
again have to delete the middle one. We continue in this manner until the last
three points make a right turn, or until there are only two points left.

We now give the algorithm in pseudocode. The pseudocode computes both the
upper hull and the lower hull. The latter is done by treating the points from right
to left, analogous to the computation of the upper hull.

Algorithm CONVEXHULL(P)
Input. A set P of points in the plane.
Output. A list containing the vertices of CH(P) in clockwise order.
1. Sort the points by x-coordinate, resulting in a sequence p1, . . . , pn.
2. Put the points p1 and p2 in a list Lupper, with p1 as the first point.
3. for i ← 3 to n
4. do Append pi to Lupper.
5. while Lupper contains more than two points and the last three points

in Lupper do not make a right turn
6. do Delete the middle of the last three points from Lupper.
7. Put the points pn and pn−1 in a list Llower, with pn as the first point.6



Section 1.1
AN EXAMPLE: CONVEX HULLS

8. for i ← n−2 downto 1
9. do Append pi to Llower.
10. while Llower contains more than 2 points and the last three points

in Llower do not make a right turn
11. do Delete the middle of the last three points from Llower.
12. Remove the first and the last point from Llower to avoid duplication of the

points where the upper and lower hull meet.
13. Append Llower to Lupper, and call the resulting list L.
14. return L

Once again, when we look closer we realize that the above algorithm is not
correct. Without mentioning it, we made the assumption that no two points have
the same x-coordinate. If this assumption is not valid the order on x-coordinate
is not well defined. Fortunately, this turns out not to be a serious problem.
We only have to generalize the ordering in a suitable way: rather than using
only the x-coordinate of the points to define the order, we use the lexicographic

not a right turn

order. This means that we first sort by x-coordinate, and if points have the same
x-coordinate we sort them by y-coordinate.

Another special case we have ignored is that the three points for which we
have to determine whether they make a left or a right turn lie on a straight line.
In this case the middle point should not occur on the convex hull, so collinear
points must be treated as if they make a left turn. In other words, we should use
a test that returns true if the three points make a right turn, and false otherwise.
(Note that this is simpler than the test required in the previous algorithm when
there were collinear points.)

With these modifications the algorithm correctly computes the convex hull:
the first scan computes the upper hull, which is now defined as the part of the
convex hull running from the lexicographically smallest vertex to the lexico-
graphically largest vertex, and the second scan computes the remaining part of
the convex hull.

What does our algorithm do in the presence of rounding errors in the floating
point arithmetic? When such errors occur, it can happen that a point is removed
from the convex hull although it should be there, or that a point inside the real
convex hull is not removed. But the structural integrity of the algorithm is
unharmed: it will compute a closed polygonal chain. After all, the output is
a list of points that we can interpret as the clockwise listing of the vertices of
a polygon, and any three consecutive points form a right turn or, because of
the rounding errors, they almost form a right turn. Moreover, no point in P
can be far outside the computed hull. The only problem that can still occur is
that, when three points lie very close together, a turn that is actually a sharp
left turn can be interpretated as a right turn. This might result in a dent in the
resulting polygon. A way out of this is to make sure that points in the input
that are very close together are considered as being the same point, for example
by rounding. Hence, although the result need not be exactly correct—but then,
we cannot hope for an exact result if we use inexact arithmetic—it does make
sense. For many applications this is good enough. Still, it is wise to be careful
in the implementation of the basic test to avoid errors as much as possible. 7



Chapter 1
COMPUTATIONAL GEOMETRY

We conclude with the following theorem:

Theorem 1.1 The convex hull of a set of n points in the plane can be computed

in O(n logn) time.

Proof. We will prove the correctness of the computation of the upper hull; the
lower hull computation can be proved correct using similar arguments. The
proof is by induction on the number of point treated. Before the for-loop starts,
the list Lupper contains the points p1 and p2, which trivially form the upper
hull of {p1, p2}. Now suppose that Lupper contains the upper hull vertices
of {p1, . . . , pi−1} and consider the addition of pi. After the execution of the
while-loop and because of the induction hypothesis, we know that the points in
Lupper form a chain that only makes right turns. Moreover, the chain starts at the
lexicographically smallest point of {p1, . . . , pi} and ends at the lexicographically
largest point, namely pi. If we can show that all points of {p1, . . . , pi} that are
not in Lupper are below the chain, then Lupper contains the correct points. Bypi

pi−1

empty region

induction we know there is no point above the chain that we had before pi was
added. Since the old chain lies below the new chain, the only possibility for a
point to lie above the new chain is if it lies in the vertical slab between pi−1 and
pi. But this is not possible, since such a point would be in between pi−1 and pi
in the lexicographical order. (You should verify that a similar argument holds if
pi−1 and pi, or any other points, have the same x-coordinate.)

To prove the time bound, we note that sorting the points lexicographically
can be done in O(n logn) time. Now consider the computation of the upper hull.
The for-loop is executed a linear number of times. The question that remains
is how often the while-loop inside it is executed. For each execution of the
for-loop the while-loop is executed at least once. For any extra execution a
point is deleted from the current hull. As each point can be deleted only once
during the construction of the upper hull, the total number of extra executions
over all for-loops is bounded by n. Similarly, the computation of the lower hull
takes O(n) time. Due to the sorting step, the total time required for computing
the convex hull is O(n logn).

The final convex hull algorithm is simple to describe and easy to implement.
It only requires lexicographic sorting and a test whether three consecutive points
make a right turn. From the original definition of the problem it was far from
obvious that such an easy and efficient solution would exist.

1.2 Degeneracies and Robustness

As we have seen in the previous section, the development of a geometric
algorithm often goes through three phases.

In the first phase, we try to ignore everything that will clutter our understanding
of the geometric concepts we are dealing with. Sometimes collinear points are
a nuisance, sometimes vertical line segments are. When first trying to design or
understand an algorithm, it is often helpful to ignore these degenerate cases.8



Section 1.2
DEGENERACIES AND ROBUSTNESS

In the second phase, we have to adjust the algorithm designed in the first phase
to be correct in the presence of degenerate cases. Beginners tend to do this
by adding a huge number of case distinctions to their algorithms. In many
situations there is a better way. By considering the geometry of the problem
again, one can often integrate special cases with the general case. For example,
in the convex hull algorithm we only had to use the lexicographical order instead
of the order on x-coordinate to deal with points with equal x-coordinate. For
most algorithms in this book we have tried to take this integrated approach to
deal with special cases. Still, it is easier not to think about such cases upon first
reading. Only after understanding how the algorithm works in the general case
should you think about degeneracies.

If you study the computational geometry literature, you will find that many
authors ignore special cases, often by formulating specific assumptions on the
input. For example, in the convex hull problem we could have ignored special
cases by simply stating that we assume that the input is such that no three
points are collinear and no two points have the same x-coordinate. From a
theoretical point of view, such assumptions are usually justified: the goal is
then to establish the computational complexity of a problem and, although it is
tedious to work out the details, degenerate cases can almost always be handled
without increasing the asymptotic complexity of the algorithm. But special cases
definitely increase the complexity of the implementations. Most researchers in
computational geometry today are aware that their general position assumptions
are not satisfied in practical applications and that an integrated treatment of the
special cases is normally the best way to handle them. Furthermore, there are
general techniques—so-called symbolic perturbation schemes—that allow one
to ignore special cases during the design and implementation, and still have an
algorithm that is correct in the presence of degeneracies.

The third phase is the actual implementation. Now one needs to think about
the primitive operations, like testing whether a point lies to the left, to the right,
or on a directed line. If you are lucky you have a geometric software library
available that contains the operations you need, otherwise you must implement
them yourself.

Another issue that arises in the implementation phase is that the assumption
of doing exact arithmetic with real numbers breaks down, and it is necessary
to understand the consequences. Robustness problems are often a cause of
frustration when implementing geometric algorithms. Solving robustness prob-
lems is not easy. One solution is to use a package providing exact arithmetic
(using integers, rationals, or even algebraic numbers, depending on the type
of problem) but this will be slow. Alternatively, one can adapt the algorithm
to detect inconsistencies and take appropriate actions to avoid crashing the
program. In this case it is not guaranteed that the algorithm produces the correct
output, and it is important to establish the exact properties that the output has.
This is what we did in the previous section, when we developed the convex
hull algorithm: the result might not be a convex polygon but we know that the
structure of the output is correct and that the output polygon is very close to the
convex hull. Finally, it is possible to predict, based on the input, the precision in 9


