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1 Lecture Plan

1. Logic in OCaml Continued

2. Background for geometry

3. Comments on PS4

4. Convex polygons

5. Finding the convex hull of a point set

2 Logic in OCaml Continued

We noted in Lecture 14 that there is a program having the polymorphic
type:

((α ∨ β)→ γ)→ ((α→ γ) ∨ (β → γ)).

We showed informally that there is no program in

((α→ γ) ∨ (β → γ))→ ((α ∨ β)→ γ).

(Take α = T, β = F, γ = F.)

We used this important principle.

If a polymorphic OCaml type is programmable, i.e. there is an
OCaml program with that type, then it is a tautology in Boolean
logic.

Note, this principle is not “if and only if.” There are tautologies that are
not programmable, e.g. (∼ β → ∼ α)→ (α→ β).
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In due course, we will show why this is true. Meanwhile, we will collect
more examples. Here is an especially simple one:

(a) ((α→ β) & (β → γ))→ (α→ γ)

What is this program?

(b) (α→ β)→ (∼β →∼α))

Is there a program?

Yes: (α→ β)→ ((β → Void)→ (α→ Void))

fun ab→ fun nb→ fun a→ nb(ab(a))

3 Background for Geometry

In the two lectures this week, we will study computational geometry
algorithms, specifically algorithms needed for finding the convex hull of a
set of points in the plane. We will examine how to implement these
algorithms using the constructive real numbers. We will also consider
informally how to demonstrate that the algorithms are correct.

The classical approach to geometry represented by Euclid’s Elements [6, 5]
does not rely on understanding real numbers or even rational numbers.
The geometric concepts are abstract. Historically they remained that way
from 350 BCE until the 17th century, and abstract geometry is still an
active area of research [7, 8, 1, 2]. Many construction problems could not
be resolved in the abstract setting, e.g. the problem of trisecting an angle
or ”squaring the circle.” Nevertheless, geometry was developed to a very
high level and was constructive in a fundamental way.

The Greeks tried to find methods of constructing polygons and showing
that they are congruent or similar. Their method of construction was to
use a straight edge and (collapsing) compass. With those tools they could
construct polygons, which they called rectilinear figures, and prove that
two such figures were congruent and that they were similar.

To make these ideas concrete, recall how Euclid, in his first theorem, shows
how to construct an equilateral triangle.
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3.1 Computational Geometry

Computational geometry (CG) is an important area of theoretical
computer science concerned with developing algorithms for efficiently
processing geometric data. CG has applications in computer vision,
graphics, computational biology, robotics, pattern recognition, and so
forth.

Typically geometric algorithms are developed using floating point
numbers. In this case there are several subtle issues that must be
addressed in evaluating the results. If the algorithms are not sufficiently
robust against the inherent limitation on the precision of floating point
input and output, they can fail to provide geometrically sensible results. In
this course we overcome this limitation by using constructive real numbers.
This is a very precise approach, and it can perhaps account for all
geometric results and capture precisely all geometric truths.

On the other hand, using constructive real numbers requires considerable
mathematical sophistication of the kind not typically taught in
undergraduate classes. So we would like to supplement the insights from
constructive reals by referencing inherently geometric concepts. There
seems to be a notion of geometric truth that can be precisely expressed
independently of floating point numbers or even infinite precision
constructive real numbers – at least in the view of this author.

It is possible that these truths can be axiomatized and developed
deductively using proof assistants such as Agda, Coq, and Nuprl. But this
is not yet accomplished in sufficient detail to be taught in college courses.
Some Cornell researchers believe this is a viable path to a precise
complementary account of geometric concepts that uses real numbers to
implement geometric concepts, insights, and intuitive algorithms.
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We will cite results from two excellent textbooks [4, 3]. We cite these
textbooks and present algorithms from them and from accounts on the
web – another excellent source of explanation for the algorithms taught in
this part of the course.

3.2 Convex hulls abstractly

We can think about the problem of finding the convex hull of a set of
points in the Greek “coordinate free” style. This approach provides the
basic intuition behind most (perhaps all) convex hull algorithms. This is
one precise sense in which our approach is abstract. In this style functional
programming is also quite natural as we will see. We let the type of Points
be the type of the entire Euclidean plane. The type Points list is an
OCaml like representation of a finite (possibly empty) collection of points
in the plane.

We typically want the points to be distinct, so we need to say that
[p1, ..., pn] is a list of distinct points. By this we mean that we do not have
pi = pj unless i = j. So we want the type of Points to come with an
equality relation.1 But we do not assume that equality is decidable on
every type. That is, we do not require a Boolean test, eq(pi, pj) deciding
whether points are equal or not.2 Expressed another way, we do not
assume that for any two points p, q we have (p = q ∨¬(p = q)) where the ∨
disjoint union is given by the OCaml variant type as defined in the OCaml
propositional type system.

Starting on page 2 of the de Berg et al textbook, Computational Geometry,
the authors give a coordinate free algorithm for computing the convex hull
of a set of points in the Euclidean plane [4]. The input is simply a list of
distinct points. They write p1, p2, p3, ..., pn as the given non-empty list of
points. If there are only two distinct points, then there is no convex hull,
so we require at least three distinct non-colinear points to state the
problem. The first step of the algorithm is to pick two of these points and
construct a directed line segment connecting them, say from p1 to p2. This
provides a base line and a direction. We can speak of the region of the
plane to the left and the one to the right of this directed line segment. We

1This is a general property of all types in the formal constructive type theories, they
come with an equality relation. Without such a relation, it is less clear how we reason
precisely about the type, indeed, whether it is a mathematically sensible collection.

2Recall that we know that the type of constructive real numbers does not have a
decidable equality function.
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check the region to the left of the segment to see if there is a point r in it.
If there is, then we try another pair of points, say p, q and make this check.
We continue until we find a pair h1, h2 with no points in the right region.
We know that this segment h1, h2 will be an edge of the convex hull. Now
we pick another pair of points that we have not tried before and perform
the same tests.

If we know that there is a convex hull of any finite list of points, then this
algorithm will find it, but it will be quite slow, n3 in the length of the list;
that is why the method is called SlowConvexHull by de Berg et al.
Moreover, it assumes that there is such a geometric object without
showing us how to construct it. How do we really know that there is
always such a geometric object for any finite list of planar points? The
textbook hints at the problems with this paragraph on page 5: “We have
designed our first geometric algorithm. It computes the convex hull of a
set of points in the plane. However, it is quite slow, – its running time is
O(n3) – it deals with degenerate cases in an awkward way, and it is not
robust. We should try to do better.” We can add to this list of issues the
fact that it assumes there is a convex hull without giving any reason for us
to believe that it exists, except perhaps for the ”rubber band” argument,
which is hardly simple mathematics. So logically, this purported
construction assumes the existence of the object we are tying to construct.

We can be more efficient and still use an abstract coordinate free approach
if we try adding points one at a time, say starting from the left most point.
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Chapter 1
COMPUTATIONAL GEOMETRY

These are just three examples of geometric problems requiring carefully de-
signed geometric algorithms for their solution. In the 1970s the field of compu-
tational geometry emerged, dealing with such geometric problems. It can be
defined as the systematic study of algorithms and data structures for geometric
objects, with a focus on exact algorithms that are asymptotically fast. Many
researchers were attracted by the challenges posed by the geometric problems.
The road from problem formulation to efficient and elegant solutions has often
been long, with many difficult and sub-optimal intermediate results. Today there
is a rich collection of geometric algorithms that are efficient, and relatively easy
to understand and implement.

This book describes the most important notions, techniques, algorithms,
and data structures from computational geometry in a way that we hope will be
attractive to readers who are interested in applying results from computational
geometry. Each chapter is motivated with a real computational problem that
requires geometric algorithms for its solution. To show the wide applicability
of computational geometry, the problems were taken from various application
areas: robotics, computer graphics, CAD/CAM, and geographic information
systems.

You should not expect ready-to-implement software solutions for major
problems in the application areas. Every chapter deals with a single concept in
computational geometry; the applications only serve to introduce and motivate
the concepts. They also illustrate the process of modeling an engineering
problem and finding an exact solution.

1.1 An Example: Convex Hulls

Good solutions to algorithmic problems of a geometric nature are mostly based
on two ingredients. One is a thorough understanding of the geometric properties
of the problem, the other is a proper application of algorithmic techniques and
data structures. If you don’t understand the geometry of the problem, all the
algorithms of the world won’t help you to solve it efficiently. On the other hand,
even if you perfectly understand the geometry of the problem, it is hard to solve
it effectively if you don’t know the right algorithmic techniques. This book will
give you a thorough understanding of the most important geometric concepts
and algorithmic techniques.

To illustrate the issues that arise in developing a geometric algorithm, this
section deals with one of the first problems that was studied in computational
geometry: the computation of planar convex hulls. We’ll skip the motivation
for this problem here; if you are interested you can read the introduction to
Chapter 11, where we study convex hulls in 3-dimensional space.

A subset S of the plane is called convex if and only if for any pair of pointsconvex not convex
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q

p,q ∈ S the line segment pq is completely contained in S. The convex hull
CH(S) of a set S is the smallest convex set that contains S. To be more precise,
it is the intersection of all convex sets that contain S.2



Section 1.1
AN EXAMPLE: CONVEX HULLS

We will study the problem of computing the convex hull of a finite set P
of n points in the plane. We can visualize what the convex hull looks like by a
thought experiment. Imagine that the points are nails sticking out of the plane,
take an elastic rubber band, hold it around the nails, and let it go. It will snap
around the nails, minimizing its length. The area enclosed by the rubber band
is the convex hull of P. This leads to an alternative definition of the convex
hull of a finite set P of points in the plane: it is the unique convex polygon
whose vertices are points from P and that contains all points of P. Of course
we should prove rigorously that this is well defined—that is, that the polygon is
unique—and that the definition is equivalent to the one given earlier, but let’s
skip that in this introductory chapter.

How do we compute the convex hull? Before we can answer this question we
must ask another question: what does it mean to compute the convex hull?
As we have seen, the convex hull of P is a convex polygon. A natural way
to represent a polygon is by listing its vertices in clockwise order, starting
with an arbitrary one. So the problem we want to solve is this: given a set
P = {p1, p2, . . . , pn} of points in the plane, compute a list that contains those
points from P that are the vertices of CH(P), listed in clockwise order.

p1

p2 p3

p4

p5
p6

p7

p8

p9

p1, p2, p3, p4, p5, p6, p7, p8, p9

input = set of points:

output = representation of the convex hull:
p4, p5, p8, p2, p9

Figure 1.1
Computing a convex hull

The first definition of convex hulls is of little help when we want to design
an algorithm to compute the convex hull. It talks about the intersection of all
convex sets containing P, of which there are infinitely many. The observation
that CH(P) is a convex polygon is more useful. Let’s see what the edges of
CH(P) are. Both endpoints p and q of such an edge are points of P, and if we
direct the line through p and q such that CH(P) lies to the right, then all the
points of P must lie to the right of this line. The reverse is also true: if all points
of P\{p,q} lie to the right of the directed line through p and q, then pq is an
edge of CH(P).

p q

Now that we understand the geometry of the problem a little bit better we can
develop an algorithm. We will describe it in a style of pseudocode we will use
throughout this book.

Algorithm SLOWCONVEXHULL(P)
Input. A set P of points in the plane.
Output. A list L containing the vertices of CH(P) in clockwise order.
1. E ← /0.
2. for all ordered pairs (p,q) ∈ P×P with p not equal to q
3. do valid ← true 3



Chapter 1
COMPUTATIONAL GEOMETRY

4. for all points r ∈ P not equal to p or q
5. do if r lies to the left of the directed line from p to q
6. then valid ← false.
7. if valid then Add the directed edge

→
pq to E.

8. From the set E of edges construct a list L of vertices of CH(P), sorted in
clockwise order.

Two steps in the algorithm are perhaps not entirely clear.
The first one is line 5: how do we test whether a point lies to the left or to the

right of a directed line? This is one of the primitive operations required in most
geometric algorithms. Throughout this book we assume that such operations
are available. It is clear that they can be performed in constant time so the
actual implementation will not affect the asymptotic running time in order of
magnitude. This is not to say that such primitive operations are unimportant or
trivial. They are not easy to implement correctly and their implementation will
affect the actual running time of the algorithm. Fortunately, software libraries
containing such primitive operations are nowadays available. We conclude that
we don’t have to worry about the test in line 5; we may assume that we have a
function available performing the test for us in constant time.

The other step of the algorithm that requires some explanation is the last one.
In the loop of lines 2–7 we determine the set E of convex hull edges. From E we
can construct the list L as follows. The edges in E are directed, so we can speak
about the origin and the destination of an edge. Because the edges are directed

�e1

�e2

destination of �e1
= origin of �e2

origin of �e1

such that the other points lie to their right, the destination of an edge comes
after its origin when the vertices are listed in clockwise order. Now remove
an arbitrary edge �e1 from E. Put the origin of �e1 as the first point into L, and
the destination as the second point. Find the edge �e2 in E whose origin is the
destination of �e1, remove it from E, and append its destination to L. Next, find
the edge �e3 whose origin is the destination of �e2, remove it from E, and append
its destination to L. We continue in this manner until there is only one edge left
in E. Then we are done; the destination of the remaining edge is necessarily the
origin of �e1, which is already the first point in L. A simple implementation of
this procedure takes O(n2) time. This can easily be improved to O(n logn), but
the time required for the rest of the algorithm dominates the total running time
anyway.

Analyzing the time complexity of SLOWCONVEXHULL is easy. We check
n2 − n pairs of points. For each pair we look at the n− 2 other points to see
whether they all lie on the right side. This will take O(n3) time in total. The
final step takes O(n2) time, so the total running time is O(n3). An algorithm
with a cubic running time is too slow to be of practical use for anything but the
smallest input sets. The problem is that we did not use any clever algorithmic
design techniques; we just translated the geometric insight into an algorithm in
a brute-force manner. But before we try to do better, it is useful to make several
observations about this algorithm.

We have been a bit careless when deriving the criterion of when a pair p,q
defines an edge of CH(P). A point r does not always lie to the right or to the4



Section 1.1
AN EXAMPLE: CONVEX HULLS

left of the line through p and q, it can also happen that it lies on this line. What
should we do then? This is what we call a degenerate case, or a degeneracy for
short. We prefer to ignore such situations when we first think about a problem,
so that we don’t get confused when we try to figure out the geometric properties
of a problem. However, these situations do arise in practice. For instance, if
we create the points by clicking on a screen with a mouse, all points will have
small integer coordinates, and it is quite likely that we will create three points
on a line.

To make the algorithm correct in the presence of degeneracies we must
reformulate the criterion above as follows: a directed edge

→
pq is an edge of

CH(P) if and only if all other points r ∈ P lie either strictly to the right of the
directed line through p and q, or they lie on the open line segment pq. (We
assume that there are no coinciding points in P.) So we have to replace line 5 of
the algorithm by this more complicated test.

We have been ignoring another important issue that can influence the correctness
of the result of our algorithm. We implicitly assumed that we can somehow
test exactly whether a point lies to the right or to the left of a given line. This
is not necessarily true: if the points are given in floating point coordinates and
the computations are done using floating point arithmetic, then there will be
rounding errors that may distort the outcome of tests.

p

q

r

p

q

r

Imagine that there are three points p, q, and r, that are nearly collinear, and
that all other points lie far to the right of them. Our algorithm tests the pairs
(p,q), (r,q), and (p,r). Since these points are nearly collinear, it is possible that
the rounding errors lead us to decide that r lies to the right of the line from p to
q, that p lies to the right of the line from r to q, and that q lies to the right of the
line from p to r. Of course this is geometrically impossible—but the floating
point arithmetic doesn’t know that! In this case the algorithm will accept all
three edges. Even worse, all three tests could give the opposite answer, in which
case the algorithm rejects all three edges, leading to a gap in the boundary of
the convex hull. And this leads to a serious problem when we try to construct
the sorted list of convex hull vertices in the last step of our algorithm. This step
assumes that there is exactly one edge starting in every convex hull vertex, and
exactly one edge ending there. Due to the rounding errors there can suddenly be
two, or no, edges starting in vertex p. This can cause the program implementing
our simple algorithm to crash, since the last step has not been designed to deal
with such inconsistent data.

Although we have proven the algorithm to be correct and to handle all
special cases, it is not robust: small errors in the computations can make it
fail in completely unexpected ways. The problem is that we have proven the
correctness assuming that we can compute exactly with real numbers.

We have designed our first geometric algorithm. It computes the convex hull
of a set of points in the plane. However, it is quite slow—its running time is
O(n3)—, it deals with degenerate cases in an awkward way, and it is not robust.
We should try to do better. 5


