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Introduction The basic concepts of calculus are real numbers, functions
from reals to reals, continuity of functions, and the derivatives and integrals of
functions. Expressing these things in a functional programming language like
OCAML lets us compute with these concepts and gives a concrete meaning
for mathematical concepts that might seem very abstract. Thinking about
the OCAML types for these things can give you a clearer understanding of
them.

Integers The integers are represented in OCAML by the type big int.
For brevity, I’ll write Int for the type of integers.

Real numbers We have seen that a real number x is a function from
positive integers to rationals such that for all n and m, |x(n) − x(m)| ≤
( 1
n

+ 1
m

). We can think of this as saying that the nth approximation x(n) is
a rational number that is within distance 1

n
of the real number x.

We represent a rational number using pair of integers, so it can have
OCAML type Int * Int. So a real number can have OCAML type Int ->

Int * Int. But we could code a pair of integers into a single integer, or,
even better, we can always normalize the nth approximation x(n) = an

bn
to

cn
2n

where cn = 2n ∗ an ÷ bn. Then we can just represent the real number x
by the function λn.cn because the denominator of the nth approximation will
always be 2n.

So, a real number can have the OCAML type Int -> Int. Lets write
real for whichever type we have chosen for the real numbers.

Functions of reals What is the type of a function like cosine(x)? Is its
OCAML type real -> real? The answer is “yes and no”. Yes, because
that is the best we can do in the OCAML type system. No, because to be a
function from reals to reals it has to satisfy an additional property.
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Two real numbers x and y are equal if their nth approximations are always
within 2

n
of each other:

x = y ⇔ |x(n)− y(n)| ≤ 2

n
, for all n

We call an OCAML function f: real -> real an operation on real num-
bers. But to be a (mathematical) function on real numbers it must satisfy
the property that if x = y then f(x) = f(y).

If that holds for all reals x and y in some interval [a, b], then we say that
the operation f is a function defined on interval [a, b].

FUN(f, a, b)⇔ (x = y ⇒ f(x) = f(y), for all x,y in [a, b]

Continuous functions A function is continuous if its graph does not have
any gaps or jumps. So, if x1 and x2 are very close together then f(x1) and
f(x2) must also be close together (otherwise there would be a jump in the
graph of f between x1 and x2). To say this precisely we need an “epsilon-
delta” definition, but that is not complicated. We can represent an arbitrarily
small ε or δ as 1

n
where n is a positive integer. The operation f: real ->

real is (uniformly) continuous on the interval [a, b] if for any ε there is a δ
such that for all reals x1 and x2 in the interval [a, b], if x1 and x2 are within
δ of each other then f(x1) and f(x2) are within ε of each other.

CONT(f, a, b)⇔ ∀n.∃m.|x−y| ≤ 1

m
⇒ |f(x)−f(y)| ≤ 1

n
, for all x, y in [a, b]

We can represent the fact that operation f is continuous on [a, b] by giving
another function mc: Int->Int, called the modulus of continuity of f, that
for each n gives the needed m. So an operation f is continuous on [a, b] if
there is a modulus of continuity mc such that, for any positive integer n, if
x1 and x2 are within 1

mc(n)
of each other then f(x1) and f(x2) will be within

1
n

of each other.

Integral of a function If f is a continuous function on [a, b] then
∫ b

a
f(x)dx

is the (signed) area under the graph of f between a and b. To get the nth

approximation of this real number, we partition the interval [a, b] into parts
of length s = b−a

k
, by letting p0 ≤ p1 ≤ p2 · · · ≤ pk be pi = a + (i ∗ s) so

p0 = a and pk = b, Then we add up the areas of the rectangles f(pi) ∗ s for
i = 0, 1, . . . k−1. We need to choose k big enough and approximate the f(pi)
close enough so that what we get is withing 1

n
of the true area.
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If mc is a modulus of continuity for f and c is an integer c such that
2n ∗ (b− a) ≤ c, then we let m = mc(c) and choose k so that s = b−a

k
≤ 1

m
.

Then for any x in the small interval [pi, pi+1] we will have |f(x)− f(pi)| ≤ 1
c
.

So the difference between the area of the rectangle f(pi)∗s and the true area
under the curve between pi and pi+1 will be at most s

c
. If we add up all of

these errors we get at most k ∗ s
c

which equals b−a
c

which is ≤ 1
2n

. The sum
of the areas of the rectangles is the real number riemann sum f a b k =
s∗ (f(a) +f(a+ s) + . . . f(a+ (k−1)∗ s)). The (2n)th approximation of that
real number is within 1

2n
of the area of the rectangles which is within 1

2n
of

the true area. So it is within 1
n

of the true area.

OCAML code for integral

let riemann_sum f a b k =

let x = rdiv_int (rsubtract b a) k in

let g i =

let aa = rmul (bigint2real (sub_big_int k i)) a in

let bb = rmul (bigint2real i) b in

rdiv_int (radd aa bb) k in

let s = rsum (fun i -> f (p i)) zero_big_int (pred_big_int k) in

rmul s x

let integral mc f a b:real =

fun n ->

let nn = mult_int_big_int 2 n in

let len = canonical_bound (rsubtract b a) in

let c = mult_big_int nn len in

let m = mc c in

let k = mult_big_int m len in

riemann_sum f a b k nn:q

When we load this code into OCAML we get this:

val integral:

(Big_int.big_int -> Big_int.big_int) ->

(real -> real) -> real -> real -> real = <fun>

The inputs to the integral are the modulus of continuity, the operation, and
the endpoints. The output is a real.

How to get a modulus of continuity If a function f has a derivative
f ′ then the Mean Value Theorem says that |f(x)−f(y)||x−y| = f ′(c) for some c
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between x and y. So, if the maximum of the absolute value of f ′ on the
interval [a, b] is bounded by an integer k, we can use fun n -> k*n for a
modulus of continuity for f on [a, b].

Running the integral code We can try this out. To calculate the area
under the curve y = x2 between 1 and 2 we use

integral (fun n -> 4*n) (fun x -> rmul x x) (int2real 1) (int2real 2)

Since we know that the derivative of x2 is 2x, the maximum of the derivative
on the interval [1,2] is 4. That is why we can use fun n -> 4*n for the
modulus of continuity.

To get two digits of accuracy, we need to approximate the integral within
1

100
so we apply it to 100. We get 2.33, reasonably fast. But to get three

digits accuracy we apply to 1000, and it takes more than a minute to get
2.333.

Let’s compute the area under the curve y = sine(x) between 0 and 3.
Since the derivative of sine(x) is cosine(x) and that is bounded by 1, we can
use the modulus of continuity fun n -> n. So we use

integral (fun n -> n) (fun x -> sine x) (int2real 0) (int2real 3)

We get two digits of accuracy by applying it to 100 and get 1.98 but it takes
about a minute.

Fundamental theorem of Calculus Function F is an anti-derviative of
function of f if F ′(x) = f(x).

The fundamental theorem of calculus says that in that case,
∫ b

a
f(x)dx =

F (b)− F (a).

We can use this to compute
∫ 2

1
x2dx quickly because an anti-derivative is

x3

3
so the answer is 23

3
− 13

3
= 7

3
= 2.33333333333333333...

For
∫ 3

0
sine(x)dx , the anti-deriviative is −cosine(x), so the answer is

−cosine(3) + cosine(0) which is 1 − cosine(3). We can compute 20 digits
of this very quickly and get 1.98999249660044545727. This agrees with the
measly two digits of accuracy we got after a minute using the integral code.

Moral: The fundamental theorem of calculus is an efficiency result. It
says that a labor-intensive summation can be computed by evaluating an
anti-derivative at two points.
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