
CS3110 Spring 2016 Lecture 12:
Developing Constructive Analysis

Reminder: Prelim in class next week. It will not cover the real numbers
beyond this lecture. Lecture 13 will be a prelim review plus a bit on the
reals.

Topics

• Background to Bishop’s account of constructive analysis

• Bishop’s preliminaries

– operation versus function and the importance of equality

– Bishop uses “set” where we say “type”. He requires a notion of
equality of elements for every set.

– One-one function is a correspondence.

– Countably infinite is 1-1 correspondence with Z+.
Q is countably infinite. See enumeration of the rationals, page
17, 1.3.

– Finite sets iff 1-1 correspondences with Zn = {0, 1, ..., n− 1}
(could use {1, 2, ..., n})

– To say that a set is subfinite is to say that it has at most n
elements.
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• Bishop uses constructive logic, related to the OCaml “logical types.”
A⇒ B iff there is a computable function from evidence for A to

evidence for B.
A&B iff there is (we know) evidence for A and B.
A ∨B iff there is evidence for A (tagged “left”) or for B (“right”)
∼ A iff A⇒ False

False is the empty set.
∀x :T.A(x) iff there is a computable function f taking any t ∈ T to

evidence for A(t)
∃x :T.A(x) iff there is a pair <t, a> where t ∈ T and a is evidence for

A(t)
Note: ∀x and ∃x are examples of dependent types. (See attached pages
10-11 from Bishop.)

Constructive logic

Bishop and Bridges use constructive logic for their development of analysis.
The development of this logic dates back to Brouwer in 1907 and then to
many logicians especially in Holland, France, the US, and Russia includ-
ing Poincaré, Heyting, Kleene, Kolmogorov, Markov, Martin-Löf, Curry,
Howard, Girard, and many others.

Constructive logic is closely related to the program types that give a compu-
tational understanding of propositional operators.

A&B as α ∗ β
A⇒ B as α→ β
A ∨B as Lα|Rβ
False as Void
True as Unit
∼ A as α→ Void

When we can find data in the program types, we know that the
corresponding logical expression is constructively true.
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Historical background to Bishop

Greek geometry was “constructive” using straight edge and compass. But
the Greeks “feared” the idea of infinity or unbounded constructions. They
loved rational numbers and harmonics.

The idea of a function did not become clear until the 1800’s “y varies with
x according to some law.”

• Cauchy – 1821 “Course in analysis.”

• Weierstrauss – by 1859 (high school teacher)

1880 split
↙ ↘

Dedekind Kronecker
Cantor Poincaré

Weierstrauss Weil
Hilbert Weyl

Brouwer 1907, 1912 (Intuitionism and Formalism)
Heyting 1956, Intuitionism
Turing 1936, On computable numbers with an application to the Entschei-

dungs problem

Note, Turing made a mistake in defining the reals computationally, a common
one. He published a correction in 1937. He originally said that a real num-
ber is computable iff we can compute its (unending) decimal by a (Turing)
machine. See Bishop p.62 problem 9.

Note further, Brouwer allowed a more general notion of computability which
could involve “free choice sequences.” Nuprl follows Brouwer, Coq follows
Bishop. There is a large library of real analysis built using Coq.

Further motivation to study constructive reals

One reason to study constructive reals is that the proof assistants are making
them practical for results in cyber-physical systems (CPS). Another reason is
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that the computer science development and implementation are part of the
intellectual history of constructive mathematics. Bishop’s book is a landmark
that computer science has “brought to life” and deepened.

The role of computer science in intellectual history is clear in theory (e.g. the
notion of computational complexity – two Cornell Turing Awards) and in ar-
tificial intelligence, the understanding and extension of intelligence. It is also
there in PL as computer science enriches the type systems and capabilities of
programming languages to support high level programming of cyber-physical
systems, computational geometry, homotopy type theory (HTT), and other
areas of mathematics.

Differences between constructive analysis over

the reals, R, and ordinary calculus over the

“classical” reals

1. In calculus books, the operations on the reals are not defined by al-
gorithms. Indeed we imagine that we can say things in calculus that
don’t make sense computationally. For example, in calculus we assume
that given two reals, say r1 and r2 we know:

• Is r1 = r2 ? – In fact we can’t decide this in general.

• Is r1 = 0? – We can’t decide this in general.

• Is r1 < r2? – We can’t decide this in general.

Bishop needed results such as Proposition 2.16 and Corollary 2.17, page
26, to deal with these concepts constructively.

2. We will see that all functions on the reals are continuous. It is not
possible to create “step functions.”
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18 Chapter 2 Calculus and the Real Numbers

is countably infinite. A similar proof using (1.2) shows that Z x Z is
countably infinite

A set which is in one-one correspondence with Zn is said to have n
elements, and to be finite. Every finite set is countable.

It is not true that every countable set is either countably infinite or
subfinite. For example, let A consist of all positive integers n such that
both n and n+2 are prime; then A is countable, but we do not know
if it is either countably infinite or subfinite. This does not rule out the
possibility that at some time in the future A will have become count-
ably infinite or subfinite; it is possible that tomorrow someone will
show that A is subfinite. This set A has the property that if it is
subfinite, then it is finite. Not all sets have this property.

2. The Real Number System

The following definition is basic to everything that follows.

(2.1) Definition. A sequence (xn) of rational numbers is regular if

(2.1.1) Ixm-xnl <m-1+n-1 (m,nnZ+).

A real number is a regular sequence of rational numbers. Two real
numbers x=-(x,,) and y=-(y.) are equal if

(2.1.2) (neZ+).

The set of real numbers is denoted by R.

(2.2) Proposition. Equality of real numbers is an equivalence relation.

Proof: Parts (i) and (ii) of (1.1) are obvious. Part (iii) is a consequence
of the following lemma.

(2.3) Lemma. The real numbers x=-(x,) and y=-(y.) are equal if and
only if for each positive integer j there exists a positive integer NN such
that

(2.3.1) 1 N)

Proof: If x=y, then (2.3.1) holds with N;-2j.
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2. The Real Number System 19

Assume conversely that for each j in Z+ there exists Nj satisfying
(2.3.1). Consider a positive integer n. If m and j are any positive
integers with m >- max {j, Nj}, then

Ixn-Ynl-5 Ixn - xml + I xm-Ymi + IYm - YnI
<(n-1+m-1)+j-1+(n-1+m 1)<2n-1+3j-1.

Since this holds for all j in Z+, (2.1.2) is valid.

Notice that the proof of Lemma (2.3) singles out a specific N,
satisfying (2.3.1). This situation is typical: every proof of a theorem
which asserts the existence of an object must embody, at least im-
plicitly, a finite routine for the construction of the object.

The rational number xn is called the n`h rational approximation to
the real number x - (xn). Note that the operation from IR to Q which
takes the real number x into its nth rational approximation is not a
function.

For later use we wish to associate with each real number x -
an integer KX such that

<KX (neZ+).

This is done by letting K,, be the least integer which is greater than
Ix1I+2. We call K,, the canonical bound for x.

The development of the arithmetic of the real numbers offers no
surprises: we operate with real numbers by operating with their ra-
tional approximations.

(2.4) Definition. Let x=-(x,,) and y=-(y.) be real numbers with re-
spective canonical bounds KX and Ky. Write

k = max {KX, Ky}.

Let a be any rational number. We define

(a) x+Y=(x2n+Y2n) 1

(b) xy=(x2knY2kn)n 1

(c) max {x, y} -(max {xn, 1

(d) -x=(-xn)-1
(e)

(2.5) Proposition. The sequences x + y, x y, max {x, y}, - x, and a* of
Definition (2.4) are real numbers.
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20 Chapter 2 Calculus and the Real Numbers

Proof (a) Write Zn=x2n+y2n Then x+y-(zn). For all positive in-
tegers m and n,

IZm-Zn _'S Ix2m-X2n+Iy2m-Y2nI
(2n) -' +(2m)-' +(2n)-' +(2m)-' =n-' +m-'.

Thus x+y is a real number.
(b) Write zn - x2knY2kn Then xy - (zn). For all positive integers m

and n,

IZm-Z,I -I x2km(Y2km -Y2kn)+y2kn\x2km-x2kfI
<-kIY2km-Y2kn+kIx2km-x2knl

<=k((2km)-' +(2kn)-' +(2km)-' +(2kn)-')=n-' +M-

Thus xy is a real number.
(c) Write zn - max {xn, yn} Then max {x, y} - (zn). Consider positive

integers m and n. For simplicity assume that

xm = max {xm, xn, Ym, Yn}
Then

JZm-Zn =jxm-maX xn,Ynf

= xm - max {xn, yn} < xm - xn < n ' + m-
Thus max {x, y} is a real number.

(d) For all positive integers m and n,

-xm-(-xn)I=Ixm-xnI<m '+n '.

Thus -x is a real number
(e) This is obvious

There is no trouble in proving that (x,y)i-*x+y, (x,y)- xy, and
(x, y) r-s max {x, y} are functions from IR x IR to IR, that x i--> - x is a
function from IR to IR; and that aHa* is a function from Q to R.

The operation
xf-->IxI -max {x, -x}

is therefore a function from IR to R, and the operation

(x, y) i---s min {x, y} - -max { -x, - y}

is a function from IR x IR to IR
The next proposition states that the real numbers obey the same

rules of arithmetic as the rational numbers.

(2.6) Proposition. For arbitrary real numbers x, y, and z and rational
numbers a and f3,

(a) x+y=y+x_ xy=yx
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2 The Real Number System 21

(b) (x+y)+z=x+(y+z), x(yz)=(xy)z
(c) x(y+z)=xy+xz
(d) 0*+x=x, 1*x=x
(e) x-x=O*
(I) IxyI=IxIIYI
(g) (a+f)*=a*+#*, (a/3)*=a*R*, and (-a)*=-a*.

We omit the simple proofs of these results.
We shall use standard notations, such as x+y+z and max{x,y,z},

without further comment.
There are three basic relations defined on the set of real numbers.

The first of these, the equality relation, has already been defined. The
remaining relations, which pertain to order, are best introduced in
terms of certain subsets IR+ and IR°+ of R.

(2.7) Definition. A real number x - (xn) is positive, or xEIR+, if

(2.7.1) xn>n-1

for some n in Z+. A real number x-(xn) is nonnegative, or xEIR°+, if

(2.7.2) -n-1 (nEZ+).

The following criteria are often useful

(2.8) Lemma. A real number x=-(x,) is positive if and only if there
exists a positive integer N such that

(2.8.1) xm_N-1 (m>_N).

A real number x = (xn) is nonnegative if and only if for each n in Z+
there exists N in Z+ such that

(2.8.2) xm_ -n-1 (m _
Proof: Assume that xelR+. Then for some n in Z+. Choose
N in Z+ with

Then
2N-1 <xn-n-1

xmJxn-Ixm-xnI>xn-m-1 -n-1

>x,-n-1-N-1>N-1

whenever m>_N. Therefore (2.8.1) is valid.
Conversely, if (2.8.1) is valid, then (2.7 1) holds with n = N + 1

Therefore xeIR+.
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22 Chapter 2 Calculus and the Real Numbers

Assume next that xeIR°+. Then for each positive integer n,

xm_ -m-'>_ -n-' (m n).

Therefore (2.8.2) is valid with N,=-n.
Assume finally that (2.8.2) holds. Then if k, m, and n are positive

integers with m >_ N, we have

xk_!xm-xm-xk> -n-1-k-1-m-1.

Since m and n are arbitrary, this gives xk>_ -k-'. Therefore
xe1Ro+

As a corollary of Lemma (2.8), we see that if x and y are equal real
numbers, then x is positive if and only if y is positive, and x is
nonnegative if and only if y is nonnegative.

It is not strictly correct to say that a real number is an
element of IR+. An element of IR+ consists of a real number and a
positive integer n such that because an element of lR+ is not
presented until both (x,) and n are given. One and the same real
number can be associated with two distinct (but equal) elements
of lR+ Nevertheless we shall continue to refer loosely to a positive
real number On those occasions when we need to refer to an n
for which we shall take the position that it was there im-
plicitly all along.

The proof of the following proposition is now easy, and will be left
to the reader. For convenience, IR* represents either IR+ or IRo+

(2.9) Proposition. Let x and y be real numbers. Then

(a) x+yelR* and xyElR* whenever xelR* and yelR*
(b) x+yn1R+ whenever xe1R+ and yelRo+

(c) xIEIRo+

(d) max {x, y}EIR* whenever xelR*

(e) min{x,y}EIR* whenever xelR* and ynlR*.

We now define the order relations on R.

(2.10) Definition. Let x and y be real numbers. We define

x>y (or y<x) if x-yeIR+
and

x _ y (or y<x) if x-yelRo+

A real number x is negative if x<0* - that is, if -x is positive.
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2 The Real Number System 23

Consider real numbers x, x', y, and y' such that (i) x = x', y = y',
and x > y We have

x'-y'=x-yn1R+
and therefore (ii) x' > y'. We express the fact that (ii) holds whenever (i)
is valid by saying that > is a relation on R. More formally, a relation
on a set X is a subset S of X x X such that if x, x', y, y' are elements
of X with x = x', y = y', and (x, y) E S, then (x', y') E S.

We express the fact that x > y if and only if y < x by saying that >
and < are transposed relations. Similarly, >_ and < are transposed
relations.

If x < y or x = y, then x< y. The converse is not valid: as we shall
see later, it is possible that we have x < y without being able to prove
that x < y or x = y. For this reason it was necessary to define the
relations < and < independently of each other.

The following rules for manipulating inequalities are easily proved
from Proposition (2.9). We omit the proofs.

(2.11) Proposition. For all real numbers x, y, z, and t,
(a) x< z whenever either x< y and y< z or x< y and y< z

(b) x< z whenever x _< y and y< z

(c) x+y<z+t whenever x < z and y < t
(d) x+y<z+t whenever x<z and y<t
(e) xy<_zy whenever x<z and y>_O*

(f) xy<zy whenever x<z and y>O*
(g) f x<y, then -x> -y
(h) f x__y, then -x>_ -y
(i) max {x, y} >_ x

(j) min {x, y} < x

(k) f x < y and y<_ x, then x = y

(1) Ixl>>=0*

(m) Ix+YI:IxI+IYI

An important property of the relation <, of which we shall make
no use, is the antisymmetry property, which states that at most one of
the relations x < y and y < x is valid for given real numbers x and y.
This negative statement has no place in the affirmative mathematics
we are trying to develop, except as motivation. Its place is taken by
the affirmative statement (k) of Proposition (2.11). As a general prin-
ciple, negative statements are only for counterexamples and moti-
vation; they are not to be used in subsequent work.



24 Chapter 2 Calculus and the Real Numbers

(2.12) Definition. For real numbers x and y we write x+y if and only
if x<y or x>y.

Inequality* is a relation because both < and > are relations. As
motivation we have the negative statement that at most one of the
relations x + y, x = y can hold for given real numbers x and y. In other
words, at most one of the relations x<y, x > y, x = y can hold. This is
clear from the definitions.

The following proposition defines the inverse x-1 of a real number
x+0*, and derives the basic properties of the operation xr-px-1.

(2.13) Proposition. Let x be a nonzero real number (so that IxIEIR+).
There exists a positive integer N with IxmI >_ N- 1 for m>_ N. Define

and

Then

Yn(xN3)

Yn=(xfN2)

(n<N)

(n>_N).

x 1 = (Yn)n 1

is a real number which is positive if x is positive, and negative if x is
negative; also x x _ 1=1 *.

If t is any real number for which xt=l*, then t=x-1. The oper-
ation xr-*x"1 is a junction. If x+0 and y+0, then (xy)-1=x-1y-1 If
a+0 is rational, then (a*) 1=(a 1)*. If x+0, then (x-1)-1=x.
Proof: Our definitions guarantee that IYnI <N for all n.

Consider positive integers m and n. Write

j - max {m, N}, k - max {n, N}.
Then

IYm -YnI =I YJ IYfU I xjN2 -xkN2I
<N2(ON2)- 1 +(kN2)- 1)=j- 1 +k- 1 _<_m- 1 +n- 1

Therefore x 1 is a real number.
Assume now that x>0*. Then by (2.8), x>0 for all sufficiently

large n. Hence yn>KX 1 (where Kx is the canonical bound for x) for
all sufficiently large n. It follows from (2.8) that x-1 > 0*. A similar
proof shows that x-1 <0* whenever x<0*.

Let k be the maximum of the canonical bounds for x and x-1.
Write xx-1-(zn). Then

Znx2nk Y2nkx2nk(x2nN2k) (n > N)
Therefore

Izn- 1*I =Ix2nN2kI- 1Ix2nk-x2nN2kI
<IY2nkI ((2n k)- 1 + (2nN 2 k) 1)<n

for n >_ N. It follows that x x -1=1 *.
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2 The Real Number System 25

If t is any real number with x t =1 *, then

x-1=x-1(xt)=(x-1x)t=(xx-1)t=t.

If x = x', then
x'x-1=xx-1=1*.

Therefore x-' =(x')-'. It follows that xi-x-1 is a function.
If x+0 and y+0, then

(xy)x-ly-1=xx-lyy-1=1*.

Therefore x-1y-1 =(xy)-1

If a 4 0 is rational, then a* (a, a, ... ). Therefore

For each x in IR+, x-t is in 1R+, and thus (x-1)-1 exists. Since
x-lx=xx-1=1*, it follows that (x-1)-1=x. Similarly (x-1)-1=x if
x is negative Therefore (x-1)-1=x whenever x40.

Of course, we often write x/y instead of xy-1 when x and y are
real numbers with y+0.

As the previous propositions show, (a/i)* = a* /3*, (a +/3)* = a* + (3*,
(-a)*-a*, (Ial)*=Ia*l, and (a-t)*=(a*)-1 for all rational numbers
a and /3. Also a Ll if and only if where L stands for any of
the relations =, <, >, and +. This situation is expressed by saying
that the map ai--*a* is an order isomorphism from Q into R. This
justifies identifying Q with a subset of IR, as we previously identified
Z with a subset of Q. Henceforth we make no distinction between a
rational number a and the corresponding real number a*

The next lemma shows that the nth rational approximation x to a
real number x - (xn) actually approximates x to within n-1.

(2.14) Lemma. For each real number x=-(x.), we have
Ix-xnl<n-1 (nnZ+).

Proof: By (2.4) and the definition of 1 1, the mth rational approxima-
tion to n-1-Ix-xnl is

n-1-Ix4m-xnI>-n-1-((4m)-1+n-1)= -(4m)-1> -m-1.

By (2.7), we have n-1-Ix-xnIE1R°+. Therefore Ix-xnl<n-1.

(2.15) Lemma. If x - (xn) and y - (yn) are real numbers with x < y, then
there exists a rational number a with x < a < y.
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26 Chapter 2 Calculus and the Real Numbers

Proof: By (2.4), we have y-x-(yen-x2n)' 1. Since y-xe1R+, by (2.7)
there exists n in 7L+ with yen-x2, >n-1. Write

a2 (x2n+Y2n)
Then

Also,
a-x>_a-x2n-Ix2n-x1 2(Y2n-x2n)-(2 n)-1>0.

z(Y2n-x2n)-(2n)-1 >0.

Therefore x < a < y.

As a corollary, for each x in JR and r in J+ there exists a in Q
with I x - al < r. Here is another corollary.

(2.16) Proposition. If x1,...,xn are real numbers with xl+...+xn>0,
then xi > 0 for some i (1 <_ i <_ n).

Proof. By (2.15), there exists a rational number a with 0 < a < x1 + ...
+ x.. For 1 < i< n let ai be a rational number with

Ixi-ail <(2n)-la.
Then

n n n

ai>_ xi- YIxi-ail >11ea.
i=1 i=1 i=1

Therefore ai > (2n) a for some i. For this i it follows that

xi>ai-Ixi-aiI>0.

(2.17) Corollary. If x, y, and z are real numbers with y<z, then either
x<zorx>y.

Proof: Since z-x+x-y=z-y>0, either z-x>0 or x-y>0, by
(2.16).

The next lemma gives an extremely useful method for proving
inequalities of the form x <y.y.

(2.18) Lemma. Let x and y be real numbers such that the assumption
x > y implies that 0 =1. Then x < y.

Proof- Without loss of generality, we take y=0. For each n in 7L+,
either xn < n- 1 or xn > n -1. The case x, > n-1 is ruled out, since it
implies that x>0. Therefore - xn >_ - n -1 for all n, and so - x >_ 0.
Thus x<- 0.
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2 The Real Number System 27

(2.19) Theorem. Let (an) be a sequence of real numbers, and let xo and
Yo be real numbers with xo<yo Then there exists a real number x such
that xo<_x<yo and x+an for all n in Z Z.

Proof: We construct by induction sequences (xn) and (yn) of rational
numbers such that

(1) (m>n>1)
(ii) xn>an or yn<an (n>_1)

(iii) yn-xn<n-' (n>1).

Assume that n >_ 1 and that xo xn -1, Yo' , Yn - t have been con-
structed. Either an > xn -1 or an < yn _ 1. In case an > xn _ 1, let xn be any
rational number with xn_1<xn<min{an,Yn-1}, and let yn be any
rational number with xn < yn < min {an, yn - U xn + n-' }. Then the rele-
vant inequalities are satisfied In case an<yn_1' let yn be any rational
number with max {an, xn _ 1 } < yn < yn _ 1, and xn any rational number
with max {an, xn _ 1, yn - n -1 } <xn < yn. Again, the relevant inequalities
are satisfied. This completes the induction.

From (i) and (iii) it follows that

Ixm-xnI =xm-xn<yn-xn<n-' (m>n).

Similarly lym-Ynl<n-' for m>_n. Therefore x-(xn) and y=(yn) are
real numbers. By (i) and (iii), they are equal. By (i), xn < x and yn >_ y
for all n. If an<xn, then an<x and so an+x. If an>yn, then an>y=x
and so an+x. Thus x has the required properties.

Theorem (2.19) is the famous theorem of Cantor, that the real
numbers are uncountable. The proof is essentially Cantor's "diagonal"
proof. Both Cantor's theorem and his method of proof are of great
importance.

The time has come to consider some counterexamples. Let (nk) be
a sequence of integers, each of which is either 0 or 1, for which we are
unable to prove either that nk =1 for some k or that nk = 0 for all k.
This corresponds to what Brouwer calls "a fugitive property of the
natural numbers". For example, such a sequence can be defined as
follows. Let nk be 0 if u+ v* w` for all integers u, v, w, t with 0 < u, v,
w< k and 3<--_ t< 2 + k. Otherwise let nk be 1. Then we are unable to
prove nk=1 for some k, because this would disprove Fermat's last
theorem. We are unable to prove nk=0 for all k, because this would
prove Fermat's last theorem.

Now define xk-0 if nj=O for all j<_k, and xk=2-m otherwise,
where m is the least positive integer such that nm = 1. Then x - (xk) is a
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28 Chapter 2 Calculus and the Real Numbers

nonnegative real number, but we are unable to prove that x>0 or x
= 0. Since nothing is true unless and until it has been proved, it is
untrue that x > 0 or x = 0.

Of course, if Fermat's last theorem is proved tomorrow, we shall
probably still be able to define a fugitive sequence (nk) of integers.
Thus it is unlikely that there will ever exist a constructive proof that
for every real number x ;?!O 0 either x>0 or x=0. We express this fact
by saying that there exists a real number x >_ 0 such that it is not true
that x>0 or x=0.

In much the same way we can construct a real number x such that
it is not true that x >- 0 or x <_ 0.

3. Sequences and Series of Real Numbers

We develop methods for defining a real number in terms of approxi-
mations by other real numbers.

(3.1) Definition. A sequence (xn) of real numbers converges to a real
number x0 if for each k in 7L+ there exists Nk in 7L+ with

(3.1.1) Ixn-x01 k-1 (n>_Nk).

The real number x0 is then called a limit of the sequence (xn). To
express the fact that (xn) converges to x0 we write

or

lim
n -. 00

xn ->xo as n-c
or simply xn --+ x0.

A sequence (xn) of real numbers is said to converge, or be con-
vergent, if there exists a limit x, of (x,).

It is easily seen that if (xn) converges to both x0 and xo, then xo
=xo.

A convergent sequence is bounded: there exists r in IR+ such that
lxnI <r for all n

A convergent sequence of real numbers is not determined until the
limit x0 and the sequence (Nk) are given, as well as the sequence
itself. Even when they are not mentioned explicitly, these quantities
are implicitly present. Similar comments apply to many subsequent
definitions, including the following.
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