
CS3110 Spring 2016 Lecture 1:
Introduction, Course Plan, Elements
of OCaml: Syntax, Evaluation (1/28)

Robert Constable

Abstract

These preliminary notes contain far more material that was cov-
ered in the first lecture. A redacted copy of the notes will be posted
next week. We leave these longer notes up now to help students under-
stand better the nature of the course. The actual lecture only covered
material up to OCaml syntax.

1 Lecture Outline

1. Lecture Outline

2. Course Outline

3. Course Themes and Mechanics

4. Course Content

5. References

2 Course Outline

Goals of the course: functional programming, data structures.

1



Mechanics:

Schedule
Assignments
Recitations
Exams: Prelim and Final
Academic integrity

Content Summary:

Functions and processes as data
Recursion as control
Data types and type theory
OCaml theory of computing
Asynchronous computation
Analysis of algorithms

Asymptotic complexity
Robustness

*Special focus:
Cyber-physical systems
Geometric algorithms

3 Course Themes and Mechanics

This course covers elements of functional programming in the language OCaml
and topics in data structures and algorithms. The OCaml programming lan-
guage is distinguished by its rich type system, and that will also be a focus of
the course, connecting to the wider study of type theory in computer science.

Type theory is used in formal methods which is an area of computer
science concerned with precisely specifying what programs should do and
attempting to guarantee that they accomplish the specified tasks. One mod-
ern approach to doing this includes using software called proof assistants and
tools called model checkers. I believe that proof assistants will soon be widely
used in education and in programming courses like this one. The NSF has
just invested another ten million dollars to advance this approach to pro-
gram correctness. The DoD has invested a great deal more, on the order of
one hundred million dollars or more. Microsoft Research is also investing in
this area, and Intel has invested for years in using proof assistants to verify
elements of its hardware.

2



Recently DARPA achieved a major success using proof assistants to de-
sign an “unhackable drone.” You might have seen news coverage of this suc-
cess. This is an example of work in the area called Cyber Physical Systems
(CPS). These systems include automobiles and aircraft that use software to
help “drive and protect” them. This is currently a very “hot area,” and this
course will mention one element of this work since some of our researchers
have made important advances in this area. The CS Department has iden-
tified CPS as a recruiting priority, and last year there were two colloquium
lectures in this area, one about drones and one about airplanes.

The large course staff of undergraduates and masters students are highly
qualified, e.g. all of the undergraduates on the staff have taken an offering of
this course in the past and done very well. The most senior course staff have
all done the job before. The current staff will be listed on the web page.

• We require two recitations per week for most weeks. We might
cancel a recitation now and then in favor of more office hours.

• Only one prelim will be given, the date will be listed on the web site.

• There will be six programming assignments/problem sets. We will
not accept late programming assignments and problem sets. We will
deal with medical issues as they arise and may create alternative as-
signments.

• There will be a final exam as well.

There are previous course notes for about 65-70% of the material in this
course, starting with fall 2009 notes. There is an on line resource book,
Introduction to OCaml, co-authored by a Cornell CS PhD, Jason Hickey, one
of my former PhD students. You can freely download it from the course web
site. There are other books on OCaml available, some in French.1

The OCaml reference manual is also on the web site. It covers the entire
language and is a bit dense and terse.

The web page for the course will describe more fully the course mechanics,
e.g. programming assignments and problem sets, prelims, quizzes, and a final
exam. Please read that material as it appears. It will discuss the role of
recitations, consulting, office hours and so forth.

1Jason used OCaml to create theMetaPRL proof assistant used to produce verified
computer programs and to produce formalized mathematics.

3



The programming assignments are the core of the course. They bring
the concepts to life, they teach advanced programming skills, and they allow
dedicated students to stand out. We tap the very best students in this course
to join the course staff for future offerings. Moreover, the CS faculty recruit
student help for their research projects from this course.

Academic Integrity We remind you of the academic integrity policies. If
you cheat we will find out, and the consequences will be severe.

4 Course Content

Our course will teach the OCaml programming language and how to program
in the functional style. You will learn not only this programming language
but some new ways to think about the programming process and how to
think rigorously about programming languages. These skills will help you
understand computer science better, and they might help you get a job in
the information technology industry where the ideas we teach are highly
valued.

OCaml is a member of the ML family of programming languages which
includes Standard ML (SML) [12] which we previously used in this course.
The family also includes Microsoft’s F#, and the original language in this
family, Classic ML [4], a very small compact language from 1979 still used
in some research projects including mine.

Knowing a language in the ML family is an indication that you were
exposed to certain modern computer science ideas that have proven very
valuable in writing clean reliable programs and in designing software sys-
tems. The ML family is also an excellent basis for presenting the topics in
data structures and the analysis of algorithms because the semantics of the
language can be given in a simple mathematically rigorous way as we will
illustrate [6, 9, 5]. This mathematical foundation will allow us to study in
some depth the following ideas.

1. Functions as data objects that can be inputs and outputs of other
functions, called higher-order functions.

2. Recursion as the main control construct and induction as the means
of proving properties of programs and data types. Indeed, we will see that
induction and recursion are two sides of the same concept, an idea connecting
proofs and programs in a mathematically strong way [1].

4



3. We will study recursive data types and see that these data types have
natural inductive properties. We will examine the concept of co-recursion
and look at co-recursive types such as streams and possibly spreads as well
(trees that can grow indefinitely, also called co-trees).

4. The ML family of functional programming languages is especially
appropriate for rigorous thinking about computational mathematics. We
will illustrate this by developing some aspects of the real numbers, R in
OCaml. These will be infinite precision computable real numbers, and they
have been used to present in a computational manner most of the calculus
you learn in mathematics, science, and engineering [2, 3].

Two or three topics in this course are “cutting edge” in the sense that
they are at the frontier of computing theory and type theory. So you will
encounter a few ideas that are not typically seen until graduate school in
computer science at other universities. These are topics that are especially
interesting to the Cornell faculty in programming languages who are known
for work in language based security.

In particular, we will look briefly at how programs can be formally speci-
fied in logic and how proof assistants can help programmers prove rigorously
that programs meet their specifications. We will mention from time to time a
particular French proof assistant that is widely used for this purpose, called
Coq, and its close relative the Nuprl proof assistant built and maintained
at Cornell. These and other proof assistants (Agda, HOL, Isabelle HOL)
have contributed to research in programming languages that are related to
OCaml. Coq can generate OCaml code from proofs.

The Coq proof assistant is being used to create a book, Software Foun-
dations [14] which formalizes the semantics of programming languages using
ideas from the textbook on programming language theory by Pierce [13] and
the textbook by Harper [5]. All of the mathematical results in the Software
Foundations book have been developed with the Coq proof assistant and are
correct to the highest standards of mathematics yet achieved because they
are mechanically checked by the proof assistant. It is not only that there
are no “typos” in the proofs from this book, it is that there are no mistakes
in reasoning, and the programs written are completely type correct and also
meet their specifications.

OCaml Theory of Computation and Types Every programming lan-
guage embodies a “mathematical theory of computation”. OCaml relies on
a theory of types to organize its theory of computation. This computation

5



theory is grounded in sophisticated mathematical concepts originating in
Principia Mathematica [18] and adapted to programming. For example, you
might enjoy reading an extremely influential article by Tony Hoare [7, 11] on
data types. After this course you will understand it well.

This version of the course might stress these mathematical ideas a bit
more than in the past. We believe that the mathematical ideas underlying
OCaml have enduring theoretical and practical value and will become pro-
gressively more important in computer science and in computing practice.
These ideas are especially important in an age when US cyber infrastructure
is increasingly under attack.

This course adds to the functional programming and data structures core
other important concepts from computer science theory, namely an under-
standing of performance, e.g. asymptotic computational complexity and an
understanding of program correctness, how to define it and how to achieve
it. We will study methods and tools for organizing large programs and com-
puting systems. We also take up the issue of concurrency and asynchronous
distributed computing, a key topic in the study of modern software systems.

Course Topics You can see the sweep of the course and how its main topics
are approached from the tentative section headings for our lectures and the
accompanying recitations in this offering. They are:

1. Introduction to OCaml functional programming 4 lectures, 4 recita-
tions

2. Data types and structures 6 lectures, 6 recitations

3. Verification and testing 4 lectures, 3 recitations

4. Analysis of algorithms and data structures 4 lectures, 4 recitations

5. Modularity and code libraries 3 lectures, 3 recitations

6. Concurrency and distribution 4 lectures, 4 recitations

These topics account for 25 lectures and there is room for a review lecture
and another enrichment lecture. The content is covered in about 25 lectures
and 24 recitations.

6



Special Focus This offering of the course will look at issues in Cyber Phys-
ical Systems. One of the new developments arising from the use of proof
assistants is that computation is done with computable real numbers. These
are infinite precision reals which have clean mathematical properties, mak-
ing it possible to reason precisely about the properties of the code. This is
something that is very hard to do when using IEEE floating point numbers
which do not have clear mathematical properties.

We will use the computable real numbers to solve problems in computa-
tional geometry, e.g. finding the convex hull of a set of points in the plane
and finding the area of arbitrary simple polygons. We might also cover the
problem of finding all intersecting lines in a region of the plane. These algo-
rithms will be programmed using infinite precision computable real numbers.
These are the “real thing.” Understanding these numbers will be a significant
part of the first half of the course and beyond. We will build up to the reals
by using “big nums” for the integers, then defining the rational numbers and
finally the real numbers. Learning to compute and reason about these real
numbers will be a central focus of several lectures and problems sets.
Lecture Notes and Readings Many of the lecture notes will be from
previous offerings of CS3110, however several lectures including this one will
be new material and will be posted on the web around the time of the lecture.
Some new lecture notes will include the material from previous offerings,
perhaps with additions or modifications.

References

[1] J. L. Bates and Robert L. Constable. Proofs as programs. ACM Trans-
actions of Programming Language Systems, 7(1):53–71, 1985.

[2] E. Bishop. Foundations of Constructive Analysis. McGraw Hill, NY,
1967.

[3] E. Bishop and D. Bridges. Constructive Analysis. Springer, New York,
1985.

[4] Michael Gordon, Robin Milner, and Christopher Wadsworth. Edinburgh
LCF: a mechanized logic of computation, volume 78 of Lecture Notes in
Computer Science. Springer-Verlag, NY, 1979.

7



[5] Robert Harper. Practical Foundations for Programming Languages.
Cambridge University Press, Cambridge, 2013.

[6] Robert Harper, D.B. MacQueen, and R. Milner. Standard ML. Technical
Report TR ECS-LFCS-86-2, Laboratory for Foundations of Computer
Science, University of Edinburgh, 1986.

[7] C. A. R. Hoare. Notes on data structuring. In Structured Programming.
Academic Press, New York, 1972.

[8] Per Martin-Löf. Constructive mathematics and computer programming.
In Proceedings of the Sixth International Congress for Logic, Methodol-
ogy, and Philosophy of Science, pages 153–175, Amsterdam, 1982. North
Holland.

[9] R. Milner, M. Tofte, and R. Harper. The Definition of Standard ML.
The MIT Press, 1991.

[10] John C. Mitchell. Foundations of Programming Languages. MIT Press,
1996.

[11] E. W. Dijkstra O. J. Dahl and C. A. R. Hoare. Structured Programming.
Academic Press, 1972.

[12] L. C. Paulson. Standard ML for the Working Programmer. Cambridge
University Press, 1991.

[13] Benjamin C. Pierce. Types and Programming Languages. MIT Press,
2002.

[14] Benjamin C. Pierce, Chris Casinghino, Michael Greenberg, Vilhelm
Sjberg, and Brent Yorgey. Software Foundations. Electronic, 2011.

[15] Gordon D. Plotkin. LCF considered as a programming language. Journal
of Theoretical Computer Science, 5:223–255, 1977.

[16] Gordon D. Plotkin. A structural approach to operational semantics.
Technical Report DAIMI-FN-19, Aarhus University, Aarhus University,
Computer Science Department, Denmark, 1981.

[17] J.E. Stoy. Denotational Semantics: The Scott-Strachey Approach to
Programming Language Theory. MIT Press, Cambridge, MA, 1977.

8



[18] A.N. Whitehead and B. Russell. Principia Mathematica, volume 1, 2,
3. Cambridge University Press, 2nd edition, 1925–27.

[19] G. Winskel. Formal Semantics of Programming Languages. MIT Press,
Cambridge, 1993.

9


