
Prof. Clarkson 
Spring 2015 

CS 3110 
Lecture 7: The dynamic environment 

Today’s music:  “Down to Earth” by Peter Gabriel from the WALL-E soundtrack 



Review 

Course so far: 
•  Syntax and semantics of (most of) OCaml 
 
Today: 
•  Different semantics 



Question #1 

How much of PS1 have you finished? 
A.  None 
B.  About 25% 
C.  About 50% 
D.  About 75% 
E.  I’m done!!! 



Semantics 

•  Dynamic semantics 
– How expressions evaluate 
– Dynamic:  execution is in motion 

– Evaluation rules e --> e' --> e''  

•  Static semantics 
– How expressions type check (among other things) 
– Static:  execution is not yet moving 

– Type checking rules e : t 



Dynamic semantics 

Today:  change our model of evaluation: 
•  Small-step substitution model:  substitute value 

for variable in body of let expression & in body of 
function 
– What we’ve done doing so far 
– Good mental model, not really what OCaml does 

•  Big-step environment model:  keep a data 
structure around that binds variables to values 
– What we’ll do now 
– Also a good mental model, much closer to what OCaml 

really does 



The core of OCaml 
Essential sublanguage of OCaml: 
 
e ::=  v | C e | (e1, ..., en) | e1 + e2  
  | x | e1 e2   
  | let x = e1 in e2  
  | match e0 with pi -> ei 

v ::= c | fun x -> e | C v | (v1, ..., vn) 
 
Missing, unimportant: records, lists, options, declarations, patterns in 
function arguments and let bindings, if 
Missing, important:  rec 
Extraneous:  all we really need is 
   e ::= x | e1 e2 | fun x -> e 



Review: evaluation 

•  Expressions step to new expressions 
e --> e1 --> e2 --> ...  

•  Long arrow means “steps to” 
–  Star means reflexive, transitive closure: 0, 1, or more steps 

•  Values “have no further computation to do” 
–  So they don't take a single step:  v-/->!
–  But they could take zero steps:  v-->*v!

•  Small-step semantics:  we model each small step the 
evaluation takes 

 



New kind of evaluation 

•  Big-step semantics:  we model just the reduction 
from the original expression to the final value 

•  Suppose e --> e' --> ... --> v 
•  We'll just record the fact that e ⇓ v!
– new notation means  e evaluates (down) to v 

–  in ASCII:  e || v!



Values 

•  Values are already done:   
–  Evaluation rule:   v || v 

•  Constants are already values 
–  42 is already a value 
–  “3110” is already a value 
–  () is already a value 

•  same for C v and (v1, ..., vn)!
•  Functions are already values 
–  heads-up:  we'll reconsider this choice next lecture 
–  fun x -> e is already a value, no matter what e is 





Operator evaluation rule 

e1 + e2 || v 
  if e1 || v1  
  and e2 || v2  
  and v is the result of primitive 
    operation v1 + v2 
 
e.g.,  
 1 + 2 || 3 
3.110 *. 1.0 || 3.11 
0 < 1 || true 
"zar" ^ "doz" || "zardoz" 



Tuples 

To evaluate (e1,...,en), 
Evaluate the subexpressions: 

 e1 || v1 
 …   

  en || vn 
Return (v1,...,vn) 
 
In which case,  
(e1,...,en) || (v1,...,vn) 
 



Tuple evaluation rule 

(e1,...,en) || (v1,...,vn) 
  if e1 || v1 
  and ... 
  and en || vn 
 
e.g.,  
so (1+1, 2+2) || (2,4) 
  because 1+1 || 2 and 2+2 || 4 



Question #2 

If we changed evaluation order to be en first, then 
then e2, then e1, which of the following 
expressions would evaluate to a different value? 

A.  (0+1,2*3)!
B.  (let x = 3 in x, “hi”)!
C.  ((), (fun x -> x+1) 1)!
D.  All the above 
E.  None of the above 



Question #2 

If we changed evaluation order to be en first, then 
then e2, then e1, which of the following 
expressions would evaluate to a different value? 

A.  (0+1,2*3)!
B.  (let x = 3 in x, “hi”)!
C.  ((), (fun x -> x+1) 1)!
D.  All the above 
E.  None of the above 



Tuple evaluation order 

Q: What order are the ei evaluated in? 
A:  It doesn’t matter.  Pure programs can't distinguish 
the order of evaluation. 

 Pure = no side effects:  no printing, no exceptions, ... 
A:  OCaml language specification says order is 
unspecified. 
A:  OCaml compiler on VM does right to left:  e2 then 
e1. 
((print_string “left\n”; 0),  
 (print_string “right\n”; 1)) 



Constructors 

To evaluate C e, 
Evaluate the subexpression: 

 e || v 
Return C v 
 
In which case, C e || C v 
 



Constructor evaluation rule 

C e || C v 
  if e || v 
 
e.g.,  
Some (1+1) || Some 2 
  because 1+1 || 2 
 
•  Multiple arguments:  C e1 ... en.  Rule easily extends. 
•  Constructors that carry no data behave like constants 

–  true is already a value 
–  [] is already a value 

 



Progress 

e ::=  v | C e | (e1, ..., en) | e1 + e2 
  | x | e1 e2   
  | let x = e1 in e2  
  | match e0 with pi -> ei 



Variables 

•  What does a variable name evaluate to? 
x || ??? 

•  Trick question:  we don’t have enough information to 
answer it 

•  Need to know what value variable was bound to 



Question #3 

What do these evaluate to? 
– let x = 2 in x+1 
– (fun x -> x+1) 2 
–   match 2 with x -> x+1 

A.  2, 2, and 2 
B.  3, 3, and 3 
C.  3, 2, and 3 
D.  3, 3, and 2 
E.  2, 3, and 3 
 



Question #3 

What do these evaluate to? 
– let x = 2 in x+1 
– (fun x -> x+1) 2 
–   match 2 with x -> x+1 

A.  2, 2, and 2 
B.  3, 3, and 3 
C.  3, 2, and 3 
D.  3, 3, and 2 
E.  2, 3, and 3 
 



Variables 

•  What does a variable name evaluate to? 
x || ??? 

•  Trick question:  we don’t have enough information to 
answer it 

•  Need to know what value variable was bound to 
–  e.g., let x = 2 in x+1 
–  e.g., (fun x -> x+1) 2 
–  e.g., match 2 with x -> x+1 
–  All evaluate to 3, but we reach a point where we need to 

know binding of x 
•  Until now, we've never needed this, because we always 

substituted before we ever get to a variable name 



Variables 

•  OCaml doesn't actually do substitution 
– (fun x -> 42) 0 !
– waste of runtime resources to do substitution inside 

42 

•  Instead, OCaml lazily substitutes by maintaining 
dynamic environment 



Dynamic environment 

•  Set of bindings of all current variables 
•  Changes throughout evaluation: 

–  No bindings at $:   
$ let x = 42 in  
  let y = "3110" in 
  e 

–  One binding {x=42} at $: 
  let x = 42 in  
$ let y = "3110" in  
  e 

–  Two bindings {x=42,y="3110"} at $: 
  let x = 42 in  
  let y = "3110" in  
$ e 



Variable evaluation 

To evaluate x in environment env  
Look up value v of x in env  
Return v 
 
 
Type checking guarantees that variable is bound, so 
we can’t ever fail to find a binding in dynamic 
environment 



Variable evaluation rule 

env :: x || v 
 if v = env(x) 

 
 
New notation: 
•  env :: e || v 
– meaning:  in dynamic environment env, expression e 

evaluates down to value v!
•  env(x) 
– meaning:  the value to which env binds x 

 



Redo:  rules with environment 
Values: 

 env :: v || v 
Operators: 

env :: e1 + e2 || v   
  if env :: e1 || v1 

     and env :: e2 || v2 
     and v is the result of primitive operation v1+v2 
Tuples: 

env :: (e1,...en) || (v1,...vn) 
  if env :: e1 || v1 
  and ...  
  and env :: en || vn 

Constructors: 
env :: C e || C v    
  if env :: e || v 

 
Why the same environment for each component of tuple? 



Scope 

•  Bindings are in effect only in the scope (the “block”) in 
which they occur 

•  Exactly what you’re used to from (say) Java 
•  Bindings inside elements of tuples are not in scope outside 

that element 
–  ((let x = 1 in x+1), (let y=2 in y+2)) 
–  x is not in scope in second component 
–  y is not in scope in first component 
–  so dynamic environment stays the same from one component 

to another  
•  env :: ei || vi 



Progress 

e ::=  v | C e | (e1, ..., en) | e1 + e2 
  | x | e1 e2   
  | let x = e1 in e2  
  | match e0 with pi -> ei 



Let expressions 

To evaluate let x = e1 in e2 in environment env 
Evaluate the binding expression e1 to a value v1 in 
environment env 

 env :: e1 || v1 
Extend the environment to bind x to v1 
 env’ = env + {x=v1} 

Evaluate the body expression e2 to a value v2 in 
environment env’ 
 env’ :: e2 || v2 

Return v2 



Let expression evaluation rule  

env :: let x=e1 in e2 || v2 
  if env :: e1 || v1 
  and env+{x=v1} :: e2 || v2 
 
Example: 

 {} :: let x = 42 in x || 42 
Why?  Because... 
•  {} :: 42 || 42!
•  and {}+{x=42} :: x || 42   
– Why?  because if env is {x=42} then env(x)=42!



Initial environment 

•  Can add an entire file’s worth of bindings to the 
dynamic environment with open Name 
–  You’ve been doing that in unit test files 

•  OCaml always does open Pervasives at the 
beginning 
– (+), (=), int_of_string, (@), 
print_string, fst, ... 

– The environment is never really empty 
•  it’s always polluted?    :) 

–  But we write {} anyway 



Extending the environment 
•  What does env+{x=v} really mean? 
•  Illuminating example:  

let x = 0 in  
let x = 1 in  
x 
|| 1 

•  Environment extension can’t just be set union 
–  We’d get {x=0,x=1} and now we don’t know what x is! 

•  Instead inner binding shadows outer binding 
–  Casts its shadow over it; temporarily replaces it 

•  Environments at particular places (abuse OCaml syntax here): 
let x = ({} 0) in  
({x=0} let x = 1 in  
  ({x=1} x)) 
 



Question #4 

let x = 0 in  
  x + (let x = 1 in x) 
|| ??? 
 
A.  0 
B.  1 
C.  2 
D.  unspecified by language 
E.  none of the above 



Question #4 

let x = 0 in  
  x + (let x = 1 in x) 
|| ??? 
 
A.  0 
B.  1 
C.  2 
D.  unspecified by language 
E.  none of the above 



Question #5 

let x = 0 in  
  (let x = 1 in x) + x 
|| ??? 
 
A.  0 
B.  1 
C.  2 
D.  unspecified by language 
E.  none of the above 



Question #5 

let x = 0 in  
  (let x = 1 in x) + x 
|| ??? 
 
A.  0 
B.  1 
C.  2 
D.  unspecified by language 
E.  none of the above 



Shadowing is not assignment 

let x = 0 in  
  x + (let x = 1 in x) 
|| 1 
 
let x = 0 in  
  (let x = 1 in x) + x 
|| 1 



Progress 

e ::=  v | C e | (e1, ..., en) | e1 + e2 
  | x | e1 e2   
  | let x = e1 in e2  
  | match e0 with pi -> ei 


