
Profs. Clarkson & George
Spring 2015

CS 3110
Lecture 25: Victory Lap

Today’s music: "We are the Champions" by Queen

Victory Lap

 Extra trip around the track by the exhausted
victors (us) J

2

Thank you!

Huge thank you to TAs and consultants!

3

Thank you!

Piazza heroes:

Thank you!

And a huge thank you to all of you!
– You surmounted a daunting challenge
– You occasionally laughed at our dumb jokes J

5

What did we learn?

•  You feel exhausted...
•  You're tired of coding...

...step back and think about what happened along
the way

What did we learn?

From the syllabus:
•  Alternative programming paradigms, especially

functional and concurrent programming
•  Writing and using specifications
•  Modular programming and data abstraction
•  Reasoning about program correctness
•  Reasoning about system performance
•  Useful and efficient data structures

...and some cross-cutting, big ideas...

1. Syntax and Semantics
•  Every language feature can be defined in isolation from other features, with

rules for:
–  syntax
–  static semantics (typing rules)
–  dynamic semantics (evaluation rules)

•  Divide-and-conquer!
•  Entire language can be defined mathematically and precisely

–  SML is. Read The Definition of Standard ML (Revised) (Tofte, Harper, MacQueen,
1997).

•  Learning to think about software in this “PL” way has made you a better
programmer even when you go back to old ways
–  And given you the mental tools and experience you need for a lifetime of

confidently picking up new languages and ideas

8

2. Benefits of immutability

•  Programmer can alias or copy without worry

•  Parallel programming easier with immutable
data

•  But mutability is appropriate when you need
to model inherently state-based phenomena
– or implement some efficient data structures

9

3. Programming languages aren’t
magic
•  Pattern matching, type inference, closures: all

features you can implement yourself

•  Interpretation of a (smallish) language is
something you can implement yourself

•  Compilation of a large language is also something
you could implement!

10

4. Elegant abstractions are magic

From a small number of simple ideas...
...an explosion of code!
– map and fold
– numbers and list-like

– async
– monads
– Map-Reduce

5. Building software is more than
hacking
•  Design: think before you type
•  Empathy: write code to communicate
•  Assurance: testing and verification
•  Performance: theory and experimentation
•  Group work

What next?
•  Follow-on courses:

–  CS 4110 Programming Languages and Logics (how to define and reason about
programming languages)

–  CS 4120 Compilers (how to implement programming languages)

•  Join the course staff?
–  CS department sent out email with URL for application site
–  Deadline is Friday, May 8, 4:30 pm for first round

•  Stay in touch
–  Tell us when 3110 helps you out with future courses (or jobs!)
–  Ask us cool PL questions
–  Drop by to tell us about the rest of your time in CS (and beyond!)… we really do

like to know

•  GO DO AMAZING THINGS WITH YOUR LIFE

Q&A

App Demo Session

•  Saturday, May 9, 12:30 pm, room TBA
•  Free food!
– Please RSVP in Piazza poll (even if not attending)

•  You can demo whatever you like
•  Awards and swag for student and staff favorites

Final Exam

•  Sunday, May 17, 2:00-4:30 pm, Olin 155
•  Covers everything in the course
•  You may have three pages of notes
•  (remaining details posted on Piazza as usual)

Final Grades

•  Fill out the course eval to get your +1%
– Take time on this, especially the free response

questions

•  Final grades:
– uploaded to registrar approx. 24 hours after final

exam scores are released on CMS

–  less than 24 hours after that, the registrar locks them,
and we can't change them

Finally

•  The most important idea of this course:
–  complicated artifacts can be broken down into small pieces
–  you can then study those small pieces and understand how

they work in isolation
–  then you can understand why their aggregation achieves some

goals

•  Examples: the OCaml language, or a module you designed

•  That kind of analysis is applicable anywhere, not just
programming

THE END

