
Prof. Clarkson 
Spring 2015 

CS 3110 
Lecture 24: Dynamic Dispatch 

Today’s music: "The Core" by Eric Clapton 



Review 

Current topic:  functional vs. object-oriented 
programming 
 
Today: 
•  Continue encoding objects in OCaml 

•  The core of OOP 
– dynamic dispatch 
–  sigma calculus 



Review: key features of OOP 

1.  Encapsulation 
2.  Subtyping 
3.  Inheritance 
4.  Dynamic dispatch 



Review: Counters 

class Counter {!
    protected int x = 0;!
    public int get() { return x; }!
    public void inc() { x++; }!
}!
 



Review: Objects 

•  Type of object is record of functions 
!type counter = {!

   !get : unit -> int;!
   !inc : unit -> unit;!
 !} 
•  Let-binding hides internal state (with closure) 
!let x = ref 0 in {!

   !get = (fun () -> !x);!
   !inc = (fun () -> x := !x+1);!
 !}!
 



Review: Classes 
•  Representation type for internal state: 
!type counter_rep = {!
! !x : int ref;!
!}!

•  Class is a function from representation type to object: 
!let counter_class (r:counter_rep) = {!
! !get = (fun () -> !(r.x));!
! !inc = (fun () -> (r.x := !(r.x) + 1));!
!}!

•  Constructor uses class function to make a new object: 
!let new_counter () =!
! !let r = {x = ref 0} in!

 ! !counter_class r !!
 



Review: Inheritance 

•  Subclass creates an object of the superclass with 
the same internal state as its own 
– Bind resulting parent object to super 

•  Subclass creates a new object with same internal 
state 

•  Subclass copies (inherits) any implementations it 
wants from superclass 



4. DYNAMIC DISPATCH 



This 

class SetCounter {!
    protected int x = 0;!
    public int get() { return x; }!
    public void set(int i) { x = i; }!
    public void inc() {!
! ! !this.set(this.get() + 1);!

    }!
}!
!



This 

•  Enables methods to invoke other methods of 
same object 

•  (and more...) 

•  How to implement in OCaml? 
– objects are already parameterized on internal state 
– now, also parameterize object on...itself! 
– much like let rec in PS3, employ backpatching 



Implementing this: Idea 

•  Create an object initially filled out with all 
dummy methods 
–  It will become this 

•  Pass that object into the class function 
•  Imperatively update the methods in object with 

the right code 
– That code can use this 



Implementing this: Code 

type set_counter = {!
  get : (unit -> int)  ref;!
  set : (int  -> unit) ref;!
  inc : (unit -> unit) ref;!
}!
!
let set_counter_class (r : counter_rep) 
(this : set_counter) =!
  ...!
!
let new_set_counter () =!
  ...!
 



Implementing this: Code 

let new_set_counter () =!
  let r = {x = ref 0} in!
  let obj = {!
      get = ref (fun () -> 0);!
      set = ref (fun n -> ());!
      inc = ref (fun () -> ());!
    } in!
  set_counter_class r obj!
 



Implementing this: Code 

let set_counter_class !
(r : counter_rep) !
(this : set_counter) =!
  this.get := (fun () -> !(r.x));!
  this.set := (fun n -> r.x := n);!
  this.inc := (fun () -> !
    let n = !(this.get)() !
    in !(this.set) (n+1));!
  this!



This 

•  Enables methods to invoke other methods of 
same object:  check. 

•  (and more...) 



Question #1 

What is printed:  A or B? 
!
class C { !
!void m() { this.m2(); } !
!void m2() { System.out.println("A"); }!

}!
class D extends C { !
!void m2() { System.out.println("B"); } !

}!
C c = new D();!
c.m();!
 



Question #1 

What is printed:  A or B? 
!
class C { !
!void m() { this.m2(); } !
!void m2() { System.out.println("A"); }!

}!
class D extends C { !
!void m2() { System.out.println("B"); } !

}!
C c = new D();!
c.m();!
 



Question #2 
class SetCounter {!
    protected int x = 0;!
    public int get() { return x; }!
    public void set(int i) { x = i; }!
    public void inc() {!

! ! !this.set(this.get() + 1);!
    }!
}!
class InstrCounter extends SetCounter {!
    protected int a = 0;!
    public int accesses() { return a; }!
    public void set(int i) {!

! ! !a++;!
! ! !super.set(i);!

    }!
}!
!
!

 
Does calling inc on an InstrCounter update a? 

A: Yes, B: No 



Question #2 
class SetCounter {!
    protected int x = 0;!
    public int get() { return x; }!
    public void set(int i) { x = i; }!
    public void inc() {!

! ! !this.set(this.get() + 1);!
    }!
}!
class InstrCounter extends SetCounter {!
    protected int a = 0;!
    public int accesses() { return a; }!
    public void set(int i) {!

! ! !a++;!
! ! !super.set(i);!

    }!
}!
!
!

 
Does calling inc on an InstrCounter update a? 

A: Yes, B: No 



Semantics of dynamic dispatch 
e1.m(e2) --> e1'.m(e2) 

 if e1 --> e1'  
 
v1.m(e2) --> v1.m(e2') 

 if e2 --> e2' 
 
v1.m(v2) --> e{v2/x}{v1/this} 

 if class of v1 is C and m(x) { e } is defined in C  
 (otherwise search upward through class hierarchy for definition of m) 
 v1 is the receiving object of the method call 

 
I'm simplifying; the Java semantics takes 30 pages. #serious 



Counter example 
class SetCounter {!
    protected int x = 0;!
    public int get() { return x; }!
    public void set(int i) { x = i; }!
    public void inc() {!

! ! !this.set(this.get() + 1);!
    }!
}!
class InstrCounter extends SetCounter {!
    protected int a = 0;!
    public int accesses() { return a; }!
    public void set(int i) {!

! ! !a++;!
! ! !super.set(i);!

    }!
}!
!
!

 
Does calling inc on an InstrCounter update a? 

YES! 
 



Counter example 
class SetCounter {!
    protected int x = 0;!
    public int get() { return x; }!
    public void set(int i) { x = i; }!
    public void inc() {!

! ! !this.set(this.get() + 1);!
    }!
}!
class InstrCounter extends SetCounter {!
    protected int a = 0;!
    public int accesses() { return a; }!
    public void set(int i) {!

! ! !a++;!
! ! !super.set(i);!

    }!
}!

 
Does calling inc on an InstrCounter update a? 

YES! 
 

When	
  superclass	
  method	
  invokes	
  
another	
  method	
  of	
  same	
  object	
  that	
  is	
  
overridden	
  in	
  subclass,	
  need	
  to	
  use	
  the	
  
subclass's	
  code,	
  not	
  the	
  superclass's	
  



Implementation of overriding: idea 

•  Create an object initially filled out with all dummy 
methods 
–  It will become this 

•  Starting from the top of the class hierarchy and moving 
downward: 
–  Pass that object into the class function that constructs the 

object 
–  Make a copy of the object to preserve the superclass's 

methods 
–  Imperatively update the methods in the object with the right 

code 
•  Subclasses can thus override methods in superclasses 
•  That code can use this and super 



Implementation of overriding: code 

let new_instr_counter () =!
  let r = { x=ref 0; a=ref 0 } in!
  let obj = {!
      get = ref (fun () -> 0);!
      set = ref (fun n -> ());!
      inc = ref (fun () -> ());!
      accesses = ref (fun () -> 0);!
    } in!
  instr_counter_class r obj!
 



Implementation of overriding: code 

let instr_counter_class !
(r : instr_counter_rep) (this : instr_counter) = !
  let super =!
    let sc = set_counter_class !

! !(... r) (... this) in!
    {get = !(sc.get);!
     set = !(sc.set);!
     inc = !(sc.inc);}!
  in!
    this.get := super.get;!
    this.set := !

! !(fun n -> r.a := !(r.a) + 1; super.set n);!
    this.inc := super.inc;!
    this.accesses := (fun () -> !(r.a));!
    this!



Object encoding in one picture 

v1 

v2 

<<fun x1 -> e1,     >>  

<<fun x2 -> e2,     >>  

f1 

f2 

... 

obj 

m1 

m2 

... 

dashed means mutable 

rep 

this 

super 

m1 

m2 

<<fun x1 -> e1,     >>  

<<fun x2 -> e2,     >>  

... ... 



Recap 
1.  Encapsulation: 

–  Internal state created by passing class function a record 
–  Record never visible to outside world 
–  Closures are a key part of that implementation 

2.  Subtyping: 
–  Insert explicit coercion functions to upcast from subtype to supertype 
–  Wouldn't be needed if OCaml's type system were a little richer 

3.  Inheritance: 
–  Class function copies implementation of method from one object to another 
–  Could implement more efficiently by having one method table per class instead of 

per object 
4.  Dynamic dispatch: 

–  Object is parameterized on itself 
–  Tricky to implement in OCaml 



What is an object? 

An object is a record of mutable functions, and is parameterized 
on both internal state and itself.   
(in our encoding, anyway) 
 

•  We implemented (encoded) objects in OCaml 
•  "Just because you've implemented something doesn't mean 

you understand it."  – Brian Cantwell Smith 
 
I hope: 
•  Now you understand objects a little better 
•  Now you appreciate the power and complexity of OOP a lot 

better 
•  (go to CS 4120 for the full enchilada) 



The core of OOP 

•  Just as FP has a core calculus inside it 
–  lambda calculus 

•  OOP has a core calculus 
–  sigma calculus 



Sigma calculus 

Syntax: 
 

e ::= 
  | x               variable 

  | e.l             method invocation 
  | e1.l := $x.e2   method update 
  | [l1 = $x1.e1;   object 

     ...;  
     ln = $xn.en] 



Methods 

$x . e 

•  the body is e 
•  the bound variable x is the receiving object 
•  note: no other arguments (not needed!) 



Semantics 
e.l --> e'.l 
 if e --> e' 
  

v.l --> e{v/x} 
 if v=[...; l = $x.e; ...]   values are objects 
  

e1.l := $x.e2 --> e1'.l := $x.e2 
 if e1 --> e1' 
  

v.l := $y.e' --> v' 
 if v=[...; l = $x.e; ...]  
 and v'=[...; l = $y.e'; ...] 
 and v and v' are the same except for l 



Everything else is a luxury 

•  Fields are syntactic sugar for methods that 
ignore their receiving object 

•  Integers can be coded up as objects 
•  Other data types can be coded up as objects 
•  Classes are just objects with a method named 

new that constructs an object whose methods 
are copied over from the class 

•  Even lambda calculus can be encoded... 



Encoding lambda in sigma 

Ideas: 
•  A function is an object with a method eval and a field arg 
•  The field is filled in at the time of function application 
•  The method causes the function to be applied  

(i.e., beta reduction) 
 
T : lambda_expr -> sigma_expr 
T(x)     = x 
T(e1 e2) = (T(e1).arg := T(e2)).eval 
T(\x.e)  = [ arg = []; 
             eval = $x . T(e){x.arg/x} ] 



Closures vs. Objects 

•  We encoded objects in OCaml 
–  closures (i.e., first-class functions) were an essential part 

of that encoding 
•  We encoded lambda calculus in sigma calculus 
–  objects are an essential part of that encoding 
–  (And you saw in 2110 that inner classes (like adapters for 

GUI buttons) capture variables from an outer scope) 
•  So closures can be implemented with objects 
– All of FP can be done in OOP 

•  And objects can be implemented with closures 
– All of OOP can be done in FP 



Zen Koan 
•  The venerable master Zardoz was walking with a student, Zed. Hoping to 

prompt the master into a discussion, Zed said "Master, I have heard that 
objects are a very good thing - is this true?" Zardoz looked pityingly at the 
student and replied, "Foolish pupil - objects are merely a pitiable substitute for 
closures."  

•  Chastised, Zed took leave from the master and retreated into a quiet cell in the 
basement of Gates Hall, intent on studying closures. Zed carefully read the 
3110 course notes, and implemented an OOP language using OCaml and 
closures.  Zed learned much, and looked forward to informing the master of 
this progress. 

•  On the next walk with Zardoz, Zed attempted to impress the master by saying 
"Master, I have diligently studied the matter, and now understand that objects 
are truly a pitiable substitute for closures." Zardoz responded by hitting Zed 
with a stick, saying "When will you learn? Closures are merely a pitiable 
substitute for objects."  

•  At that moment, Zed became enlightened. 


