
Prof. Clarkson 
Spring 2015 

CS 3110 
Lecture 16:  Amortized Analysis 

Today’s music:  "Money, Money, Money" by ABBA 
 



Review 

Current topic:  Reasoning about performance 
•  Efficiency 
•  Big Oh 
•  Recurrences 

 
Today:  
•  Alternative notions of efficiency 
•  Amortized analysis 
–  Efficiency of data abstractions, not just individual 

functions 



Question #1 

How much of PS3 have you finished? 
A.  None 
B.  About 25% 
C.  About 50% 
D.  About 75% 
E.  I’m done!!! 



Review: What is "efficiency"? 

Final attempt:  An algorithm is efficient if its 
worst-case running time on input of size N is 
O(N^d) for some constant d. 



Asymptotic bounds 

Big Oh: 
–  asymptotic upper bound 
–  O(g) = {f | exists c>0, n0>0, forall n >= n0, f(n) <= c * g(n)} 

–  intuitions:  f <= g,  f is at least as efficient as g 



Asymptotic bounds 

Big Omega 
–  asymptotic lower bound 
–  Ω(g) = {f | exists c>0, n0>0, forall n >= n0, f(n) >= c * g(n)} 

–  intuitions:  f >= g,  f is at most as efficient as g 



Asymptotic bounds 

Big Theta 
–  asymptotic tight bound 
–  Θ(g) = O(g) ∩ Ω(g)  
–  Θ(g) = {f | exists c1>0, c2>0, n0>0, forall n >= n0,  

     c1 * g(n) <= f(n) <= c2 * g(n)} 

–  intuitions:  f = g,  f is just as efficient as g 
–  beware:  some authors write O(g) when they really mean Θ(g)  



Asymptotic bounds 

[Cormen	  et	  al.	  	  Introduc)on	  to	  Algorithms,	  3rd	  ed,	  2009]	  



Alternative notions of efficiency 

•  Expected-case running time 
–  Instead of worst case 
–  Useful for randomized algorithms 
–  Maybe less useful for deterministic algorithms 

•  Unless you really do know something about probability distribution of 
inputs 

•  All inputs are probably not equally likely 

•  Space 
–  How much memory is used?  Cache space? Disk space?   

•  Other resources 
–  Power, network bandwidth, ... 

•  Efficiency of an entire data abstraction... 



Stacks with multipop 

module type STACK = sig!
  type 'a t!
  exception Empty!
!
  val empty : 'a t!
  val is_empty : 'a t -> bool!
  val push : 'a -> 'a t  -> 'a t!
  val peek : 'a t -> 'a!
  val pop : 'a t -> 'a t  !
  val multipop : int -> 'a t  -> 'a t !
end!
 



Stacks with multipop 

module Stack : STACK = struct!
  type 'a t = 'a list !
  exception Empty!
!
  let empty = []!
  let is_empty s = s = []!
  let push x s = x :: s!
  ...!



Stacks with multipop 

module Stack : STACK = struct!
  type 'a t = 'a list !
  exception Empty!
!
  let empty = []          (* O(1) *)!
  let is_empty s = s = [] (* O(1) *)!
  let push x s = x :: s   (* O(1) *)!
  ...!



Stacks with multipop 

module Stack : STACK = struct!
  ...!
  let peek = function     !
!| []    -> raise Empty!
!| x::xs -> x !

  let pop = function      !
!| []    -> raise Empty!
!| x::xs -> xs!

  ...!



Stacks with multipop 

module Stack : STACK = struct!
  ...!
  let peek = function     (* O(1) *)!
!| []    -> raise Empty!
!| x::xs -> x !

  let pop = function      (* O(1) *)!
!| []    -> raise Empty!
!| x::xs -> xs!

  ...!



Stacks with multipop 

module Stack : STACK = struct!
  ...!
  let multipop k s = !
!let rec repeat m f x = !
!  if m=0 then x !
! ! ! else repeat (m-1) f (f x)!
!in repeat k pop s!

end!



Stacks with multipop 

module Stack : STACK = struct!
  ...!
  let multipop k s =!
!let rec repeat m f x = !
!  if m=0 then x !
! ! ! else repeat (m-1) f (f x)!
!in repeat k pop s!

  (* O(min(k, |s|)) !
   * which is O(n) where n = |s|*)!
end!



Question #2 

•  Start with an initially 
empty stack 

•  Do a sequence of STACK 
operations 

•  Suppose maximum length 
stack ever reaches is n 

•  Suppose (coincidentally) 
that the sequence of 
operations is of length n 

•  What is worst-case 
running time of entire 
sequence? 

A.  O(1) 
B.  O(n) 
C.  O(n log n) 
D.  O(n^2) 
E.  O(2^n) 



Question #2 

•  Start with an initially 
empty stack 

•  Do a sequence of STACK 
operations 

•  Suppose maximum length 
stack ever reaches is n 

•  Suppose (coincidentally) 
that the sequence of 
operations is of length n 

•  What is worst-case 
running time of entire 
sequence? 

A.  O(1) 
B.  O(n) 
C.  O(n log n) 
D.  O(n^2)  possible answer 
E.  O(2^n) 

Why?   
•  n operations 
•  each is O(n) 
•  n*O(n) = O(n^2) 
...that's correct but pessimistic 



Improved analysis of efficiency 

•  Consider the average cost of each operation in 
the sequence, still in the worst case 
– average = arithmetic mean = T(n)/n 

•  where T(n) is total worst-case cost of n operations 

– average <> expected value of random variable 

 



Improved analysis of efficiency 

•  Fact:  each value pushed onto stack can be popped 
off at most once 
–  In a sequence of n operations, can't be more than n calls 

to push 
–  So can't be more than n calls to pop, including calls 
multipop makes to pop 

–  Each of those calls to push and pop is O(1) 
•  So worst-case running time of entire sequence is 

T(n) = n * O(1) = O(n) 
•  And average worst-case running time of each 

operation in sequence is T(n)/n = O(n)/n = O(1) 



A monetary analysis 

•  Real cost: 
–  push:  $1 
–  pop:  $1 
–  multipop:  $min(k, |s|) 

•  Let's engage in some "creative accounting" 
•  Billed cost: 
–  push:  $2 
–  pop:  $0 
–  multipop:  $0 

•  Fact:  we can use billed cost to pay the real cost of any 
sequence of operations 



A monetary analysis 
Opera&on	   Stack	  a.er	  op	   Real	  cost	   Billed	  cost	  

push [x] 1	   2	  

push [y;x] 1	   2	  

pop [x] 1	   0	  

push [z;x] 1	   2	  

push [a;z;x] 1	   2	  

multipop 2 [x] 2	   0	  

push [b;x] 1	   2	  

multipop 3 Empty 2	   0	  

TOTAL	   10	   10	  



A monetary analysis 

•  Cost of push: 
–  $2 billed 
–  use $1 of that to pay the real cost 
–  save an extra $1 in that element's "bank account" 

•  Cost of pop: 
–  $0 billed 
–  use the saved $1 in that element's account to pay the real cost 

•  Cost of multipop: 
–  (see pop) 

•  So cost of any operation is O(1) 
–  Because 2 and 0 are both O(1) 

•  These costs are called amortized costs 



A monetary analysis 

•  Amortized cost of push: 
–  $2 billed 
–  use $1 of that to pay the real cost 
–  save an extra $1 in that element's "bank account" 

•  Amortized cost of pop: 
–  $0 billed 
–  use the saved $1 in that element's account to pay the real cost 

•  Amortized cost of multipop: 
–  (see pop) 

•  So amortized cost of any operation is O(1) 
–  Because 2 and 0 are both O(1) 

•  These costs are called amortized costs 



Amortized analysis of efficiency 

•  Amortize:  put aside money at intervals for 
gradual payment of debt [Webster's 1964] 
– L. "mort-" as in "death" 

•  Pay extra money for some operations as a credit 
•  Use that credit to pay higher cost of some later 

operations 
•  a.k.a. banker's method and accounting method 
•  Invented by Sleator and Tarjan (1985) 



Robert Tarjan 

b. 1948  

Turing Award Winner (1986) 
with Prof. John Hopcroft 
 
For fundamental achievements in 
the design and analysis of 
algorithms and data structures. 
 
Cornell CS faculty 1972-1973 
 



Another kind of amortized analysis 

•  Banker's method required tracking credit from 
sequence of operations 

•  Alternative idea:   
– determine amount of credit available just from state 

of data structure, not from its history 
–  i.e., "let's ignore history" 

•  Leads to physicist's method a.k.a. potential 
method 



Physicist's method 

•  Potential energy:  stored energy of position 
possessed by an object 
– drawn bow 
–  stretched spring 
– child on playground at height of swing 

•  Suppose we have function U(d) giving us the 
"potential energy" stored in a data structure 

•  We'll use that stored energy to pay for expensive 
operations 



Physicist's method 

•  Suppose operation changes data structure from d0 to d1 
•  Define amortized cost of operation to be 

= realcost(op) + U(d1) – U(d0) 
•  Amortized cost of sequence of two operations 

= realcost(op1) + U(d1) – U(d0) 
    + realcost(op2) + U(d2) – U(d1) 
= realcost(op1) + realcost(op2) + U(d2) – U(d0) 

•  Amortized cost of sequence of n operations 
= [∑i=1..n (realcost(op_i))] + U(dn) – U(d0) 

•  Telescoping sum:  intermediate potentials cancel out; we 
can ignore them in analysis 



A physical analysis 

Potential of stack is length of list: U(s) = length(s) 

Opera&on	   Stack	  a.er	  op	   Real	  cost	   U(s)	  

--- [] -‐-‐-‐	   0	  

push [x] 1	   1	  

push [y;x] 1	   2	  

pop [x] 1	   1	  

push [z;x] 1	   2	  

push [a;z;x] 1	   3	  

multipop 2 [x] 2	   1	  

push [b;x] 1	   2	  

multipop 3 Empty 2	   0	  

TOTAL	   10	   -‐-‐-‐	  



A physical analysis 

•  Amortized cost of push: 
–  real cost is 1 
– change in potential is 1 

•  because U(x::s) – U(s) = 1 

–  so amortized cost is 2 = O(1) 



A physical analysis 

•  Amortized cost of pop: 
–  real cost is 1 
– change in potential is –1 

•  because U(s) – U(x::s) = –1 

–  so amortized cost is 0 = O(1) 



A physical analysis 

•  Amortized cost of multipop: 
–  real cost is min(k, |s|) 
– change in potential is also -min(k, |s|) 

–  so amortized cost is 0 = O(1) 

•  So amortized cost of any operation is O(1) 



Recall from Lec14:  Hash tables 

•  If load factor gets too high, make the array bigger, thus 
reducing load factor 
–  OCaml Hashtbl and java.util.HashMap:  if load factor > 

2.0 then double array size, bringing load factor back to around 1.0 
–  Rehash elements into new buckets 
–  Efficiency: 

•  insert:  O(1) 
•  find & remove:  O(2), which is O(1) 
•  rehashing:  arguably still constant time; will return to this later in course 

•  If load factor gets too small (hence memory is being wasted), 
could shrink the array, thus increasing load factor 
–  Neither OCaml nor Java do this 



Hash tables: physicist's method 

•  Simplifying assumptions:  
–  no remove operation 
–  ignore cost of all operations until load factor reaches 1 for the first 

time 
•  Potential:  U(h) = 4(n – m) 

–  where n is number of elements in h 
–  and m is number of buckets in h 
–  Causes potential to increase as load factor (=n/m) grows 
–  When load factor is 1, it holds that m=n, so U(h) = 0 

•  no extra credit stored up immediately after resize 
–  When load factor is 2, it holds that m=n/2, so U(h) = 2n 

•  enough extra credit stored up to pay to rehash and insert each element 
just when we need to resize 

 



Hash tables: physicist's method 

•  Amortized cost of insert (including resize) 
– Let n be # elements and m be # buckets before insert 
–  If no resize is triggered: 

•  Cost of 1 each to hash and insert element 
•  Change in potential = 4(n+1–m) – 4(n – m) = 4n +4 – 4m 

– 4n + 4m = 4 
•  Amortized cost = 1 + 1 + 4 = 6 = O(1) 



Hash tables: physicist's method 

•  Amortized cost of insert (including resize) 
–  Let n be # elements and m be # buckets before insert 
–  If resize is triggered: 

•  Then n+1 = 2m 
•  Cost of 2(n+1) to hash and insert n+1 elements 
•  Change in potential = 4(n+1 – 2m) – 4(n – m) = 4n + 4 – 8m – 

4n + 4m = 4 – 4m = 4 – 2(2m) = 4 – 2(n+1) = 4 – 2n – 2 
•  Amortized cost = 2(n + 1) + 4 – 2n – 2 = 2n + 2 + 4 – 2n – 2 = 4 

= O(1) 

•  Whether resize occurs or not, amortized cost of 
O(1) 



Hash tables: physicist's method 

•  Suppose we did have remove operation 
–  Cost of remove itself is 1 to hash  
–  Plus expected worst-case time of at most 2 to delete element 

from bucket 
•  because load factor is at most 2 

–  Potential:  U(h) = max(4(n – m), 0) 
•  No "negative potential" or "negative credit":  always pay for expensive 

operations in advance, otherwise might end a sequence without ever 
paying off debt 

–  Analysis of insert proceeds as before 

•  Conclusion:  resizing hash tables have amortized expected 
worst-case running time that is constant! 


