
Prof. Clarkson 
Spring 2015 

CS 3110 
Lecture 15:  Efficiency 

Today’s music:  Opening theme from The Big O 
(THE ビッグオ) 

by Toshihiko Sahashi 



Review 

Course so far: 
•  Introduction to functional programming 
•  Modular programming 

 

Next:  
•  Reasoning about programs 
•  Today:   
– What it means to be efficient 



Question 1 

Which of the following would you prefer? 
 
A.  O(n^2) 
B.  O(log(n)) 
C.  O(n) 
D.  They're all good 
E.  I thought this was 3110, not Algo 
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Performance 

•  You've built beautiful, elegant, functional code 
•  You've organized it into modules with clear 

specifications 

•  Now, you begin to worry about performance 
– Some part of code is too slow 
– You want to understand the efficiency of a data 

abstraction, like a hash table 
– You want to find a more efficient algorithm 



What is "efficiency"? 

Attempt #1:  An algorithm is efficient if, when 
implemented, it runs quickly on particular input 
instances 

 
...problems with that? 



What is "efficiency"? 

Attempt #1:  An algorithm is efficient if, when implemented, 
it runs quickly on particular input instances 
Incomplete list of problems: 
–  Inefficient algorithms can run quickly on small test cases 
–  Fast processors and optimizing compilers can make inefficient 

algorithms run quickly 
–  Efficient algorithms can run slowly when coded sloppily 
–  Some input instances are harder than others 
–  Efficiency on small inputs doesn't imply efficiency on large 

inputs 
–  Some clients can afford to be more patient than others; quick 

for me might be slow for you 



Lessons learned from attempt #1 

Lesson 1:  Time as measured by a clock is not the right 
metric 
– Want a metric that is reasonably independent of 

hardware, compiler, other software running, etc. 
–  idea:  number of steps taken by dynamic semantics 

during evaluation of program 
•  steps are independent of implementation details 
•  But: each step might really take a different amount of time? 

–  creating a closure, looking up a variable, computing an addition 

•  in practice, the difference isn't really big enough to matter 



Lessons learned from attempt #1 

Lesson 2:  Running time on particular input instances 
is not the right metric 
– Want a metric that can predict running time on any 

input instance 
–  idea:  size of the input instance 

•  make metric be a function of input size 
•  (combined with lesson 1) specifically, the maximum number of 

steps for an input of that size 
•  But: particular inputs of the same size might really take a 

different amount of time? 
–  multiplying arbitrary matrices vs. multiplying by all zeros 

•  in practice, size matters more 



Lessons learned from attempt #1 

Lesson 3:  Quickness is not the right metric 
– Want a metric that is reasonably objective; 

independent of subjective notions of what is fast 

–  idea:  beats brute-force search 
•  brute force: enumerate all the answers one by one, check 

and see whether the answer is right 
–  the simple, dumb solution to nearly any algorithmic problem 
–  related idea:  guess an answer, check whether correct  

e.g., bogosort 

•  but by how much is enough to beat brute-force search? 



Lessons learned from attempt #1 

Lesson 3:  Quickness is not the right metric 
– Want a metric that is reasonably objective; independent 

of subjective notions of what is fast 
–  better idea:  polynomial time 

•  (combined with ideas from previous two lessons) 
can express maximum number of steps as a polynomial function 
of the size N of input, e.g., 
–  aN^2 + bN + c 

•  But: some polynomials might be too big to be quick (N^100)? 
•  But: some non-polynomials might be quick enough  

(N^(1+.02*(log N)))? 
•  in practice, polynomial time really does work 



What is "efficiency"? 

Attempt #2:  An algorithm is efficient if its 
maximum number of steps of execution is 
polynomial in the size of its input. 

 
let's give that a try... 
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Precision of running time 

•  Precise bounds are exhausting to find 
•  Precise bounds are to some extent meaningless 
– Are those constants c1..c8 really useful? 
–  If it takes 25 steps in high level language, but 

compiled down to assembly would take 10x more 
steps, is the precision useful? 

– Caveat:  if you're building code that flies an airplane 
or controls a nuclear reactor, you do care about 
precise, real-time guarantees 



Some simplified running times 

N	
   N^2	
   N^3	
   2^N	
  

N=10	
   <	
  1	
  sec	
   <	
  1	
  sec	
   <	
  1	
  sec	
   <	
  1	
  sec	
  

N=100	
   <	
  1	
  sec	
   <	
  1	
  sec	
   1	
  sec	
   10^17	
  years	
  

N=1,000	
   <	
  1	
  sec	
   1	
  sec	
   18	
  min	
   very	
  long	
  

N=10,000	
   <	
  1	
  sec	
   2	
  min	
   12	
  days	
   very	
  long	
  

N=100,000	
   <	
  1	
  sec	
   3	
  hours	
   32	
  years	
   very	
  long	
  

N=1,000,000	
   1	
  sec	
   12	
  days	
   10^4	
  years	
   very	
  long	
  

very	
  long	
  =	
  more	
  years	
  than	
  the	
  esDmated	
  number	
  of	
  atoms	
  in	
  universe	
  

size	
  
of	
  

input	
  

max	
  #	
  steps	
  as	
  funcDon	
  of	
  N	
  

assuming	
  1 microsecond/step	
  



Simplifying running times 
•  Rather than 1.62N^2 + 3.5N + 8 steps, we would rather say that running 

time "grows like N^2" 
–  identify broad classes of algorithm with similar performance 

•  Ignore the low-order terms 
–  e.g., ignore 3.5N+8 
–  Why?  For big N, N^2 is much, much bigger than N 

•  Ignore the constant factor of high-order term 
–  e.g., ignore 1.62 
–  Why?  For classifying algorithms, constants aren't meaningful 

•  Code run on my machine might be a constant factor faster or slower than on your 
machine, but that's not a property of the algorithm 

–  Caveat:  Performance tuning real-world code actually can be about getting 
the constants to be small! 

•  Abstraction to an imprecise quantity 



Imprecise abstractions 

•  OCaml's int type is an abstraction of a subset of Z 
–  don't know which int when reasoning about the type of 

an expression 

•  ±1 is an abstraction of {1,-1} 
–  don't know which when manipulating it in a formula 

•  Here's a new one:  Big Ell 
–  L(e) represents a natural number whose value is less than 

or equal to e 
–  precisely, L(e) = {m | 0 <= m <= e} 
–  e.g., L(5) = {0, 1, 2, 3, 4, 5} 



Manipulating Big Ell 

•  What is 1 + L(5)? 
•  Trick question! 
–  Replace L(5) with set:  1 + {0..5} 
–  But + is defined on ints, not sets of ints 

•  We could distribute the + over the set:  
{1+0, ..., 1+5} = {1..6} 
– That is, a set of values, one for each possible instantiation 

of L(5) 
•  Note that {1..6} ⊆ {0..6} = L(6) 
•  So we could say that 1 + L(5) ⊆ L(6) 



Question #2 

What is L(2) + L(3)? 
Hint:  set of values, one for each possible 
instantiation of L(2) and of L(3) 
A.  L(2) + L(3) ⊆ L(2) 
B.  L(2) + L(3) ⊆ L(3) 
C.  L(2) + L(3) ⊆ L(4) 
D.  L(2) + L(3) ⊆ L(5) 
E.  L(2) + L(3) ⊆ L(6) 
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Question #3 

What is L(2) * L(3)? 
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D.  L(2) * L(3) ⊆ L(5) 
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A little trickier... 

What is 2^L(3)? 
•  L(3) = {0..3} 
•  So 2^L(3) could be any of  

{2^0, ... , 2^3} = {1, 2, 4, 8} 
•  And {1,2,4,8} ⊆ L(8) = L(2^3) 
•  Therefore 2^L(3) ⊆ L(2^3) 

...we can use this idea of Big Ell to invent an imprecise 
abstraction for running times 



Big Oh, take 1 

•  Recall:  we're interested in running time as a function of 
input size 

•  Recall:  L(e) represents any natural number that is less 
than or equal to a natural number e 

•  "New" imprecise abstraction:  Big Oh 
–  O(g) represents any function that is less than or equal to 

function g, for every input n. 
–  precisely, O(g) = {f | forall n, f(n) <= g(n)} 
–  e.g., O(fun n -> 2n) = {f | forall n, f(n) <= 2n} 

•  (fun n -> n) ∈ O(fun n -> 2n) 

•  For simplicity, let's assume function inputs and outputs are non-
negative (since input size and running time won't be negative) 



Big Oh, take 2 

Recall:  we want to ignore constant factors 
– O(g) represents any function that is less than or 

equal to function g times some positive constant c, 
for every input n. 

– precisely, O(g) = {f | exists c>0, forall n,  
       f(n) <= c * g(n)} 

– e.g., O(fun n -> n^3) = {f | exists c>0, forall n,  
         f(n) <= c * n^3} 
•  (fun n -> 3*n^3) ∈ O(fun n -> n^3) 

because 3*n^3 <= c * n^3, where c = 3 (or c=4, ...) 



Big Oh, take 3 

Recall:  we care about what happens at scale 

fun	
  n	
  -­‐>	
  2n	
  

fun	
  n	
  -­‐>	
  n^2	
  

could	
  just	
  build	
  a	
  lookup	
  table	
  for	
  inputs	
  in	
  the	
  range	
  0..2	
  	
  



Big Oh, take 3 

Recall:  we care about what happens at scale 
– O(g) represents any function that is less than or equal to 

function g times some positive constant c, for every input 
n greater than or equal to some positive constant n0. 

–  precisely, O(g) = {f | exists c>0, n0>0, forall n >= n0,  
       f(n) <= c * g(n)} 

–  e.g., O(fun n -> n^2) = {f | exists c>0, n0>0, forall n >= n0, 
        f(n) <= c * n^2} 
•  (fun n -> 2n) ∈ O(fun n -> n^2) 

because 2n <= c * n^2, where c = 2, for all n >= 1 

 



The important, final definition you should know: 
 
 
 
 

O(g) = {f | exists c>0, n0>0,  
    forall n >= n0,  
    f(n) <= c * g(n)} 

Big Oh 



Instead of  
 O(g) = {f | ... 

most authors write  
 O(g(n)) = {f(n) | ... 

 
•  They don't really mean g applied to n; they mean a 

function g parameterized on input n but not yet 
applied 

•  Maybe they never studied functional programming 
J 

Big Oh Notation: Warning 1 



Big Oh Notation: Warning 2 

Instead of  
 (fun n -> 2n) ∈ O(fun n -> n^2) 

all authors write  
2n = O(n^2) 

 

•  Your instructor has always found this abusage 
distressing 

•  Yet henceforth he will follow the convention J 
– The standard defense is that = should be read here as "is" not 

as "equals" 

–  Be careful:  one-directional equality! 

 



A Theory of Big Oh 

•  reflexivity:  f = O(f) 
•  (no symmetry condition for Big Oh; there is one for Big Theta) 
•  transitivity:  f = O(g) /\ g = O(h) => f = O(h) 
•  c * O(f) = O(f) 
•  O(c * f) = O(f) 
•  O(f) * O(g) = O(f * g) 

–  where f * g means (fun n -> f(n)*g(n)) 
•  ... 
 
Useful to know these equalities so that you don't have to keep re-
deriving them from first principles 



What is "efficiency"? 

Final attempt:  An algorithm is efficient if its 
worst-case running time is O(N^d) for some 
constant d. 



Running times of some algorithms 

•  O(1):  constant:  access an element of an array (of length n) 
•  O(log n):  logarithmic:  binary search through sorted array of 

length n 
•  O(n):  linear: maximum element of list of length n 
•  O(n log n):  linearithmic:  mergesort a list of length n 
•  O(n^2):  quadratic:  bubblesort an array of length n 
•  O(n^3):  cubic:  matrix multiplication of n-by-n matrices 
•  O(2^n):  exponential:  enumerate all integers of bit length n 
 
...some of these are not obvious, require proof 


