
Prof. Clarkson
Spring 2015

CS 3110
Lecture 15: Efficiency

Today’s music: Opening theme from The Big O
(THE ビッグオ)

by Toshihiko Sahashi

Review

Course so far:
•  Introduction to functional programming
•  Modular programming

Next:
•  Reasoning about programs
•  Today:
– What it means to be efficient

Question 1

Which of the following would you prefer?

A.  O(n^2)
B.  O(log(n))
C.  O(n)
D.  They're all good
E.  I thought this was 3110, not Algo

Question 1

Which of the following would you prefer?

A.  O(n^2)
B.  O(log(n))
C.  O(n)
D.  They're all good
E.  I thought this was 3110, not Algo

Performance

•  You've built beautiful, elegant, functional code
•  You've organized it into modules with clear

specifications

•  Now, you begin to worry about performance
– Some part of code is too slow
– You want to understand the efficiency of a data

abstraction, like a hash table
– You want to find a more efficient algorithm

What is "efficiency"?

Attempt #1: An algorithm is efficient if, when
implemented, it runs quickly on particular input
instances

...problems with that?

What is "efficiency"?

Attempt #1: An algorithm is efficient if, when implemented,
it runs quickly on particular input instances
Incomplete list of problems:
–  Inefficient algorithms can run quickly on small test cases
–  Fast processors and optimizing compilers can make inefficient

algorithms run quickly
–  Efficient algorithms can run slowly when coded sloppily
–  Some input instances are harder than others
–  Efficiency on small inputs doesn't imply efficiency on large

inputs
–  Some clients can afford to be more patient than others; quick

for me might be slow for you

Lessons learned from attempt #1

Lesson 1: Time as measured by a clock is not the right
metric
– Want a metric that is reasonably independent of

hardware, compiler, other software running, etc.
–  idea: number of steps taken by dynamic semantics

during evaluation of program
•  steps are independent of implementation details
•  But: each step might really take a different amount of time?

–  creating a closure, looking up a variable, computing an addition

•  in practice, the difference isn't really big enough to matter

Lessons learned from attempt #1

Lesson 2: Running time on particular input instances
is not the right metric
– Want a metric that can predict running time on any

input instance
–  idea: size of the input instance

•  make metric be a function of input size
•  (combined with lesson 1) specifically, the maximum number of

steps for an input of that size
•  But: particular inputs of the same size might really take a

different amount of time?
–  multiplying arbitrary matrices vs. multiplying by all zeros

•  in practice, size matters more

Lessons learned from attempt #1

Lesson 3: Quickness is not the right metric
– Want a metric that is reasonably objective;

independent of subjective notions of what is fast

–  idea: beats brute-force search
•  brute force: enumerate all the answers one by one, check

and see whether the answer is right
–  the simple, dumb solution to nearly any algorithmic problem
–  related idea: guess an answer, check whether correct

e.g., bogosort

•  but by how much is enough to beat brute-force search?

Lessons learned from attempt #1

Lesson 3: Quickness is not the right metric
– Want a metric that is reasonably objective; independent

of subjective notions of what is fast
–  better idea: polynomial time

•  (combined with ideas from previous two lessons)
can express maximum number of steps as a polynomial function
of the size N of input, e.g.,
–  aN^2 + bN + c

•  But: some polynomials might be too big to be quick (N^100)?
•  But: some non-polynomials might be quick enough

(N^(1+.02*(log N)))?
•  in practice, polynomial time really does work

What is "efficiency"?

Attempt #2: An algorithm is efficient if its
maximum number of steps of execution is
polynomial in the size of its input.

let's give that a try...

Analysis of running time

[Cormen	
 et	
 al.	
 	
 Introduc)on	
 to	
 Algorithms,	
 3rd	
 ed,	
 2009]	

Analysis of running time

[Cormen	
 et	
 al.	
 	
 Introduc)on	
 to	
 Algorithms,	
 3rd	
 ed,	
 2009]	

Precision of running time

•  Precise bounds are exhausting to find
•  Precise bounds are to some extent meaningless
– Are those constants c1..c8 really useful?
–  If it takes 25 steps in high level language, but

compiled down to assembly would take 10x more
steps, is the precision useful?

– Caveat: if you're building code that flies an airplane
or controls a nuclear reactor, you do care about
precise, real-time guarantees

Some simplified running times

N	
 N^2	
 N^3	
 2^N	

N=10	
 <	
 1	
 sec	
 <	
 1	
 sec	
 <	
 1	
 sec	
 <	
 1	
 sec	

N=100	
 <	
 1	
 sec	
 <	
 1	
 sec	
 1	
 sec	
 10^17	
 years	

N=1,000	
 <	
 1	
 sec	
 1	
 sec	
 18	
 min	
 very	
 long	

N=10,000	
 <	
 1	
 sec	
 2	
 min	
 12	
 days	
 very	
 long	

N=100,000	
 <	
 1	
 sec	
 3	
 hours	
 32	
 years	
 very	
 long	

N=1,000,000	
 1	
 sec	
 12	
 days	
 10^4	
 years	
 very	
 long	

very	
 long	
 =	
 more	
 years	
 than	
 the	
 esDmated	
 number	
 of	
 atoms	
 in	
 universe	

size	

of	

input	

max	
 #	
 steps	
 as	
 funcDon	
 of	
 N	

assuming	
 1 microsecond/step	

Simplifying running times
•  Rather than 1.62N^2 + 3.5N + 8 steps, we would rather say that running

time "grows like N^2"
–  identify broad classes of algorithm with similar performance

•  Ignore the low-order terms
–  e.g., ignore 3.5N+8
–  Why? For big N, N^2 is much, much bigger than N

•  Ignore the constant factor of high-order term
–  e.g., ignore 1.62
–  Why? For classifying algorithms, constants aren't meaningful

•  Code run on my machine might be a constant factor faster or slower than on your
machine, but that's not a property of the algorithm

–  Caveat: Performance tuning real-world code actually can be about getting
the constants to be small!

•  Abstraction to an imprecise quantity

Imprecise abstractions

•  OCaml's int type is an abstraction of a subset of Z
–  don't know which int when reasoning about the type of

an expression

•  ±1 is an abstraction of {1,-1}
–  don't know which when manipulating it in a formula

•  Here's a new one: Big Ell
–  L(e) represents a natural number whose value is less than

or equal to e
–  precisely, L(e) = {m | 0 <= m <= e}
–  e.g., L(5) = {0, 1, 2, 3, 4, 5}

Manipulating Big Ell

•  What is 1 + L(5)?
•  Trick question!
–  Replace L(5) with set: 1 + {0..5}
–  But + is defined on ints, not sets of ints

•  We could distribute the + over the set:
{1+0, ..., 1+5} = {1..6}
– That is, a set of values, one for each possible instantiation

of L(5)
•  Note that {1..6} ⊆ {0..6} = L(6)
•  So we could say that 1 + L(5) ⊆ L(6)

Question #2

What is L(2) + L(3)?
Hint: set of values, one for each possible
instantiation of L(2) and of L(3)
A.  L(2) + L(3) ⊆ L(2)
B.  L(2) + L(3) ⊆ L(3)
C.  L(2) + L(3) ⊆ L(4)
D.  L(2) + L(3) ⊆ L(5)
E.  L(2) + L(3) ⊆ L(6)

Question #2

What is L(2) + L(3)?
Hint: set of values, one for each possible
instantiation of L(2) and of L(3)
A.  L(2) + L(3) ⊆ L(2)
B.  L(2) + L(3) ⊆ L(3)
C.  L(2) + L(3) ⊆ L(4)
D.  L(2) + L(3) ⊆ L(5)
E.  L(2) + L(3) ⊆ L(6)

Question #3

What is L(2) * L(3)?

A.  L(2) * L(3) ⊆ L(2)
B.  L(2) * L(3) ⊆ L(3)
C.  L(2) * L(3) ⊆ L(4)
D.  L(2) * L(3) ⊆ L(5)
E.  L(2) * L(3) ⊆ L(6)

Question #3

What is L(2) * L(3)?

A.  L(2) * L(3) ⊆ L(2)
B.  L(2) * L(3) ⊆ L(3)
C.  L(2) * L(3) ⊆ L(4)
D.  L(2) * L(3) ⊆ L(5)
E.  L(2) * L(3) ⊆ L(6)

A little trickier...

What is 2^L(3)?
•  L(3) = {0..3}
•  So 2^L(3) could be any of

{2^0, ... , 2^3} = {1, 2, 4, 8}
•  And {1,2,4,8} ⊆ L(8) = L(2^3)
•  Therefore 2^L(3) ⊆ L(2^3)

...we can use this idea of Big Ell to invent an imprecise
abstraction for running times

Big Oh, take 1

•  Recall: we're interested in running time as a function of
input size

•  Recall: L(e) represents any natural number that is less
than or equal to a natural number e

•  "New" imprecise abstraction: Big Oh
–  O(g) represents any function that is less than or equal to

function g, for every input n.
–  precisely, O(g) = {f | forall n, f(n) <= g(n)}
–  e.g., O(fun n -> 2n) = {f | forall n, f(n) <= 2n}

•  (fun n -> n) ∈ O(fun n -> 2n)

•  For simplicity, let's assume function inputs and outputs are non-
negative (since input size and running time won't be negative)

Big Oh, take 2

Recall: we want to ignore constant factors
– O(g) represents any function that is less than or

equal to function g times some positive constant c,
for every input n.

– precisely, O(g) = {f | exists c>0, forall n,
 f(n) <= c * g(n)}

– e.g., O(fun n -> n^3) = {f | exists c>0, forall n,
 f(n) <= c * n^3}
•  (fun n -> 3*n^3) ∈ O(fun n -> n^3)

because 3*n^3 <= c * n^3, where c = 3 (or c=4, ...)

Big Oh, take 3

Recall: we care about what happens at scale

fun	
 n	
 -­‐>	
 2n	

fun	
 n	
 -­‐>	
 n^2	

could	
 just	
 build	
 a	
 lookup	
 table	
 for	
 inputs	
 in	
 the	
 range	
 0..2	
 	

Big Oh, take 3

Recall: we care about what happens at scale
– O(g) represents any function that is less than or equal to

function g times some positive constant c, for every input
n greater than or equal to some positive constant n0.

–  precisely, O(g) = {f | exists c>0, n0>0, forall n >= n0,
 f(n) <= c * g(n)}

–  e.g., O(fun n -> n^2) = {f | exists c>0, n0>0, forall n >= n0,
 f(n) <= c * n^2}
•  (fun n -> 2n) ∈ O(fun n -> n^2)

because 2n <= c * n^2, where c = 2, for all n >= 1

The important, final definition you should know:

O(g) = {f | exists c>0, n0>0,
 forall n >= n0,
 f(n) <= c * g(n)}

Big Oh

Instead of
 O(g) = {f | ...

most authors write
 O(g(n)) = {f(n) | ...

•  They don't really mean g applied to n; they mean a

function g parameterized on input n but not yet
applied

•  Maybe they never studied functional programming
J

Big Oh Notation: Warning 1

Big Oh Notation: Warning 2

Instead of
 (fun n -> 2n) ∈ O(fun n -> n^2)

all authors write
2n = O(n^2)

•  Your instructor has always found this abusage
distressing

•  Yet henceforth he will follow the convention J
– The standard defense is that = should be read here as "is" not

as "equals"

–  Be careful: one-directional equality!

A Theory of Big Oh

•  reflexivity: f = O(f)
•  (no symmetry condition for Big Oh; there is one for Big Theta)
•  transitivity: f = O(g) /\ g = O(h) => f = O(h)
•  c * O(f) = O(f)
•  O(c * f) = O(f)
•  O(f) * O(g) = O(f * g)

–  where f * g means (fun n -> f(n)*g(n))
•  ...

Useful to know these equalities so that you don't have to keep re-
deriving them from first principles

What is "efficiency"?

Final attempt: An algorithm is efficient if its
worst-case running time is O(N^d) for some
constant d.

Running times of some algorithms

•  O(1): constant: access an element of an array (of length n)
•  O(log n): logarithmic: binary search through sorted array of

length n
•  O(n): linear: maximum element of list of length n
•  O(n log n): linearithmic: mergesort a list of length n
•  O(n^2): quadratic: bubblesort an array of length n
•  O(n^3): cubic: matrix multiplication of n-by-n matrices
•  O(2^n): exponential: enumerate all integers of bit length n

...some of these are not obvious, require proof

