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Course staf

l Instructor: Nate Foster
l Joined Cornell in 2010 from Upenn
l Research area: programming languages

l Instructor: Michael George
l Joined Cornell in 2013 from Cornell
l Research area: programming languages

TAs: Jonathan DiLorenzo, Ben Greenman, Ben Carriel, 
Muhammad Khan, Arjun Biddanda, Jianneng Li, Harris 
Karsch
l >10 person-years on 3110 course staf

Consultants: many



Course meetings

Lectures: Tuesday and Thursday 10:10-11am

Recitations:
New material in lecture and recitation

• You are expected to attend both

Class participation counts
• Please stick to the same section

Consulting: lots of hours (see website)



Course web site

http://www.cs.cornell.edu/Courses/cs3110
• Course material
• Homework
• Announcements

Includes a complete set of course notes
 Nearest equivalent to a textbook
 But the lectures and sections are definitive

Links to lecture notes will go live shortly after 
lecture

Goal is to help, not replace attendance!

http://www.cs.cornell.edu/courses/cs3110


Piazza and CMS

 Online discussion forum
 Monitored by TAs/consultants
 Ask for help, but don’t post solutions

CMS
 “Course Management System”
 Assignments and grades posted here



Coursework

6 problem sets (+ 1 optional)
• Due Thursdays at 11:59pm
• Optional PS #0 (out today) due Thurday 2/30
• Electronic submission via CMS

4 x individual assignments
2 x two-person assignments

• 3 weeks for the big assignments
• There will be intermediate checkpoints

2 preliminary exams and a final



Grading

Rough breakdown:
- 45% problem sets

- automatic grading for correctness
- manual grading for design

- 30% prelims
- 20% final
- 5% participation (lecture, section, piazza,...)

We expect the median grade to be in the B/B+ 
range.



Karma

This material is fun and interesting
- You are encouraged to explore on your own
- We'll give you suggestions for things to try
- But come up with your own too!

But...Karma is completely optional and will not 
afect your grade



Late policy

Two free “slip days”
• Due Saturday at 11:59PM
• Penalties applied if you run out

No-compile grace
Due Saturday at 11:59PM
Small dif for a penalty

Save your code and submit early and often
• CMS is your friend
• Submit early...you can always resubmit

If you have a emergency (e.g., medical, 
family) talk to Nate before the last second



Academic integrity

Two requests:
1. You are here as part of an academic community.
    Act with integrity.

2. If you aren't sure whether some type of 
    collaboration is allowed, ask!

...and one note:
We use automated software to detect cheating.
It works.



Special Needs and Wellness

We will provide reasonable accommodations to 
students who have a documented disability (e.g., 
physical, learning, psychiatric, vision, hearing, or 
systemic).

If you are experiencing undue personal or academic 
stress at any time during the semester (or if you 
notice that a fellow student is), contact me, 
Engineering Advising, or Gannett.



What this course is about

Programming isn’t hard

Programming well is very hard
• Programmers vary greatly
• 10X or more diference in skills

We want you to write code that is:
• Reliable, efficient, readable, testable, 

provable, maintainable… beautiful!

Expand your problem-solving skills
• Recognize problems and map them onto the 

right abstractions and algorithms



Thinking versus typing

“A year at the lab bench saves an 
hour at the library”

Fact: there are an infinite number 
of incorrect programs

Corollary: making random 
tweaks to your code is unlikely to 
help

• If you find yourself changing 
“<“ to “<=“ in the hopes that 
your code will work, you’re in 
trouble

Lesson: think before you type!

http://www.flickr.com/photos/tmartin/32010
732/



CS 3110 Challenges

In early courses smart students 
can get away with bad habits

 “Just hack until it works”
 Solve everything by yourself
 Write first, test later

CS 3110 ≈ Tour de France
 Professionals need good work 

habits and the right approach

Will need to think rigorously about 
programs and their models

 Think for a few minutes, instead 
of typing for days!

http://www.flickr.com/photos/franklintello/4349
205547/



Rule #1

Good programmers are lazy
• Never write the same code twice
• Reuse libraries
• Keep interfaces small and simple



Main goal of CS3110

Master key linguistic abstractions:
• Procedural abstraction
• Control: iteration, recursion, pattern 

matching, laziness, exceptions, events
• Encapsulation: closures, ADTs
• Parameterization: higher-order procedures, 

modules

Mostly in service to rule #1

Transcends individual programming languages



Other goals

Exposure to software engineering techniques:
• Modular design
• Integrated testing
• Code reviews

Exposure to abstract models:
• Models for design & communication
• Models & techniques for proving correctness
• Models for analyzing space & time

Rigorous thinking about programs!
• Proofs, like in high school geometry



Tools

We will be using OCaml
- A popular and growing functional language
- (Lots) more on OCaml soon

We will use other common programming tools
- Linux
- Git (later in the course)

For help getting going:
- PS 0
- Demo sessions Thursday and Friday

- please try to download before coming!
- Weekend consulting



Why OCaml?

OCaml programs are easy to reason about
- variables don't change
- function output depends only on input
- well defined semantics

OCaml makes abstraction easy
- polymorphism
- higher-order functions
- modules

OCaml is safe
- many errors caught early
- “once it compiles,
  it's probably right”



Imperative style

Program uses commands (a.k.a statements) 
that do things to the state of the system:

• x = x + 1;
• a[i] = 42;
• p.next = p.next.next;

Functions and methods can have side efects
• int wheels(Vehicle v) {

l v.size++;
l return v.numw;

• }



Trends against imperative style

The fantasy:
- there is a single state
- the computer does one thing at a time
- in the order that I ask it to

The reality:
- there is no single state

- programs have many threads
- spread across many cores
- spread across many processors
- spread across many computers
- each with its own view of memory

- there is no single program
- most applications integrate multiple services

- the program you write isn't the one that runs
- aggressive compiler optimizations

Imperative style is not well suited to modern computing



Functional Style

A program is an expression describing what to 
compute.

Variables never change(!)
- they are more like definitions
- function output depends only on input

Example:
let x = 0 in
let f y = x + y in
let x = 3 in
f 5

f is a function that takes in y and returns x + y

What is f 5? (vote: 8 or 5?)



Advantages of functional style

(Functional) abstraction:
- Functions can be called promiscuously
- Can pass functions as arguments to other functions
- ...and return them from functions

- Remember rule #1?

Testing and specification:
- Only one behavior to describe

Equational reasoning:
- if x equals y, then replacing y with x has no efect:

let x = f 0 in x + x is the same as (f 0) + (f 0)
- (mostly)
- Useful to programmer AND compiler



Imperative “vs.” functional

Functional languages:
 Higher level of abstraction
 Closer to specification
 Easier to develop robust software

Imperative languages:
 Lower level of abstraction
 Often more efficient
 More difficult to maintain, debug
 More error-prone



Programming Languages Map

Fortran

Haskell Matlab

Pascal

Perl

C

C++

Lisp

OCaml
SML

Java

Functional Imperative

Object-Oriented

Scheme

ML
family

JavaScript Python



Example 1: Sum Squares

y = 0;
for (x = 1; x <= n; x++) {

y = y + x*x;
}

How do I program without changing variables? 



Example 1: Sum Squares

int sumsq(int n) {
y = 0;
for (x = 1; x <= n; x++) {

y += x*x;
}
return n;

}

let rec sumsq (n:int):int =
  if n=0 then 0
  else n*n + sumsq (n-1)

let rec sumsq n =
if n = 0 then 0
else n*n + sumsq (n-1)



Example 2: Sumcubes

Remember rule #1?

Create a common abstraction by passing 
functions as arguments:

let rec sumof f n = 
  if n=0 then 0
  else f n + sumop f (n-1)

let sumsquares x = sumof square x
let sumcubes   x = sumof cube   x

let sumcubes = sumof cube
let sumcubes = sumof (fun x → x*x*x)



Example 3: Reverse List

List reverse(List x) {
  List y = null;
  while (x != null) {

List t = x.next;
x.next = y;
y = x;
x = t;

}
return y;

}



Example 3: Reverse List

let rec reverse lst =
match lst with

   | []   -> []
   | h::t -> reverse t @ [h]

Pattern matching simplifies working with data 
structures, being sure to handle all cases



Example 4: Quicksort

let qsort l = match l with
| [] → []
| mid::rest →

     let left, right = partition ((<) mid) rest   
     in (qsort left) @ [mid] @ (qsort right)

Describe quicksort in English.

Quicksort in OCaml:

Describe quicksort in Java:
(No).



Why OCaml?

OCaml is a great language to know
- Lightweight and good for rapid prototyping
- Powerful
- Growing in popularity

OCaml is a great vehicle for ideas
- Functional programming
- Formal reasoning
- Software design
- These skills apply to all languages

Learning new languages and paradigms is useful
- Principles and concepts beat syntax
- You will think diferently



Rough schedule

Introduction to functional programming (6)
Functional data structures (5)
Verification and Testing (5)
Preliminary Exam #1
Concurrency (1)
Data structures and analysis of algorithms (5)
Preliminary Exam #2
Topics: streams, λ-calculus, garbage collection
Final exam



Keep an eye on Piazza

 - Demo session locations and times
 - Weekend consulting times
 - VM download
 - PS0 release
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