
http://www.flickr.com/photos/rofi/2097239111/

Data Structures
and
Functional
Programming
Course Overview

Nate Foster and Michael George
Cornell University
Spring 2014

Course staf

l Instructor: Nate Foster
l Joined Cornell in 2010 from Upenn
l Research area: programming languages

l Instructor: Michael George
l Joined Cornell in 2013 from Cornell
l Research area: programming languages

TAs: Jonathan DiLorenzo, Ben Greenman, Ben Carriel,
Muhammad Khan, Arjun Biddanda, Jianneng Li, Harris
Karsch
l >10 person-years on 3110 course staf

Consultants: many

Course meetings

Lectures: Tuesday and Thursday 10:10-11am

Recitations:
New material in lecture and recitation

• You are expected to attend both

Class participation counts
• Please stick to the same section

Consulting: lots of hours (see website)

Course web site

http://www.cs.cornell.edu/Courses/cs3110
• Course material
• Homework
• Announcements

Includes a complete set of course notes
 Nearest equivalent to a textbook
 But the lectures and sections are definitive

Links to lecture notes will go live shortly after
lecture

Goal is to help, not replace attendance!

http://www.cs.cornell.edu/courses/cs3110

Piazza and CMS

 Online discussion forum
 Monitored by TAs/consultants
 Ask for help, but don’t post solutions

CMS
 “Course Management System”
 Assignments and grades posted here

Coursework

6 problem sets (+ 1 optional)
• Due Thursdays at 11:59pm
• Optional PS #0 (out today) due Thurday 2/30
• Electronic submission via CMS

4 x individual assignments
2 x two-person assignments

• 3 weeks for the big assignments
• There will be intermediate checkpoints

2 preliminary exams and a final

Grading

Rough breakdown:
- 45% problem sets

- automatic grading for correctness
- manual grading for design

- 30% prelims
- 20% final
- 5% participation (lecture, section, piazza,...)

We expect the median grade to be in the B/B+
range.

Karma

This material is fun and interesting
- You are encouraged to explore on your own
- We'll give you suggestions for things to try
- But come up with your own too!

But...Karma is completely optional and will not
afect your grade

Late policy

Two free “slip days”
• Due Saturday at 11:59PM
• Penalties applied if you run out

No-compile grace
Due Saturday at 11:59PM
Small dif for a penalty

Save your code and submit early and often
• CMS is your friend
• Submit early...you can always resubmit

If you have a emergency (e.g., medical,
family) talk to Nate before the last second

Academic integrity

Two requests:
1. You are here as part of an academic community.
 Act with integrity.

2. If you aren't sure whether some type of
 collaboration is allowed, ask!

...and one note:
We use automated software to detect cheating.
It works.

Special Needs and Wellness

We will provide reasonable accommodations to
students who have a documented disability (e.g.,
physical, learning, psychiatric, vision, hearing, or
systemic).

If you are experiencing undue personal or academic
stress at any time during the semester (or if you
notice that a fellow student is), contact me,
Engineering Advising, or Gannett.

What this course is about

Programming isn’t hard

Programming well is very hard
• Programmers vary greatly
• 10X or more diference in skills

We want you to write code that is:
• Reliable, efficient, readable, testable,

provable, maintainable… beautiful!

Expand your problem-solving skills
• Recognize problems and map them onto the

right abstractions and algorithms

Thinking versus typing

“A year at the lab bench saves an
hour at the library”

Fact: there are an infinite number
of incorrect programs

Corollary: making random
tweaks to your code is unlikely to
help

• If you find yourself changing
“<“ to “<=“ in the hopes that
your code will work, you’re in
trouble

Lesson: think before you type!

http://www.flickr.com/photos/tmartin/32010
732/

CS 3110 Challenges

In early courses smart students
can get away with bad habits

 “Just hack until it works”
 Solve everything by yourself
 Write first, test later

CS 3110 ≈ Tour de France
 Professionals need good work

habits and the right approach

Will need to think rigorously about
programs and their models

 Think for a few minutes, instead
of typing for days!

http://www.flickr.com/photos/franklintello/4349
205547/

Rule #1

Good programmers are lazy
• Never write the same code twice
• Reuse libraries
• Keep interfaces small and simple

Main goal of CS3110

Master key linguistic abstractions:
• Procedural abstraction
• Control: iteration, recursion, pattern

matching, laziness, exceptions, events
• Encapsulation: closures, ADTs
• Parameterization: higher-order procedures,

modules

Mostly in service to rule #1

Transcends individual programming languages

Other goals

Exposure to software engineering techniques:
• Modular design
• Integrated testing
• Code reviews

Exposure to abstract models:
• Models for design & communication
• Models & techniques for proving correctness
• Models for analyzing space & time

Rigorous thinking about programs!
• Proofs, like in high school geometry

Tools

We will be using OCaml
- A popular and growing functional language
- (Lots) more on OCaml soon

We will use other common programming tools
- Linux
- Git (later in the course)

For help getting going:
- PS 0
- Demo sessions Thursday and Friday

- please try to download before coming!
- Weekend consulting

Why OCaml?

OCaml programs are easy to reason about
- variables don't change
- function output depends only on input
- well defined semantics

OCaml makes abstraction easy
- polymorphism
- higher-order functions
- modules

OCaml is safe
- many errors caught early
- “once it compiles,
 it's probably right”

Imperative style

Program uses commands (a.k.a statements)
that do things to the state of the system:

• x = x + 1;
• a[i] = 42;
• p.next = p.next.next;

Functions and methods can have side efects
• int wheels(Vehicle v) {

l v.size++;
l return v.numw;

• }

Trends against imperative style

The fantasy:
- there is a single state
- the computer does one thing at a time
- in the order that I ask it to

The reality:
- there is no single state

- programs have many threads
- spread across many cores
- spread across many processors
- spread across many computers
- each with its own view of memory

- there is no single program
- most applications integrate multiple services

- the program you write isn't the one that runs
- aggressive compiler optimizations

Imperative style is not well suited to modern computing

Functional Style

A program is an expression describing what to
compute.

Variables never change(!)
- they are more like definitions
- function output depends only on input

Example:
let x = 0 in
let f y = x + y in
let x = 3 in
f 5

f is a function that takes in y and returns x + y

What is f 5? (vote: 8 or 5?)

Advantages of functional style

(Functional) abstraction:
- Functions can be called promiscuously
- Can pass functions as arguments to other functions
- ...and return them from functions

- Remember rule #1?

Testing and specification:
- Only one behavior to describe

Equational reasoning:
- if x equals y, then replacing y with x has no efect:

let x = f 0 in x + x is the same as (f 0) + (f 0)
- (mostly)
- Useful to programmer AND compiler

Imperative “vs.” functional

Functional languages:
 Higher level of abstraction
 Closer to specification
 Easier to develop robust software

Imperative languages:
 Lower level of abstraction
 Often more efficient
 More difficult to maintain, debug
 More error-prone

Programming Languages Map

Fortran

Haskell Matlab

Pascal

Perl

C

C++

Lisp

OCaml
SML

Java

Functional Imperative

Object-Oriented

Scheme

ML
family

JavaScript Python

Example 1: Sum Squares

y = 0;
for (x = 1; x <= n; x++) {

y = y + x*x;
}

How do I program without changing variables?

Example 1: Sum Squares

int sumsq(int n) {
y = 0;
for (x = 1; x <= n; x++) {

y += x*x;
}
return n;

}

let rec sumsq (n:int):int =
 if n=0 then 0
 else n*n + sumsq (n-1)

let rec sumsq n =
if n = 0 then 0
else n*n + sumsq (n-1)

Example 2: Sumcubes

Remember rule #1?

Create a common abstraction by passing
functions as arguments:

let rec sumof f n =
 if n=0 then 0
 else f n + sumop f (n-1)

let sumsquares x = sumof square x
let sumcubes x = sumof cube x

let sumcubes = sumof cube
let sumcubes = sumof (fun x → x*x*x)

Example 3: Reverse List

List reverse(List x) {
 List y = null;
 while (x != null) {

List t = x.next;
x.next = y;
y = x;
x = t;

}
return y;

}

Example 3: Reverse List

let rec reverse lst =
match lst with

 | [] -> []
 | h::t -> reverse t @ [h]

Pattern matching simplifies working with data
structures, being sure to handle all cases

Example 4: Quicksort

let qsort l = match l with
| [] → []
| mid::rest →

 let left, right = partition ((<) mid) rest
 in (qsort left) @ [mid] @ (qsort right)

Describe quicksort in English.

Quicksort in OCaml:

Describe quicksort in Java:
(No).

Why OCaml?

OCaml is a great language to know
- Lightweight and good for rapid prototyping
- Powerful
- Growing in popularity

OCaml is a great vehicle for ideas
- Functional programming
- Formal reasoning
- Software design
- These skills apply to all languages

Learning new languages and paradigms is useful
- Principles and concepts beat syntax
- You will think diferently

Rough schedule

Introduction to functional programming (6)
Functional data structures (5)
Verification and Testing (5)
Preliminary Exam #1
Concurrency (1)
Data structures and analysis of algorithms (5)
Preliminary Exam #2
Topics: streams, λ-calculus, garbage collection
Final exam

Keep an eye on Piazza

 - Demo session locations and times
 - Weekend consulting times
 - VM download
 - PS0 release

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34

