
Data Structures and Functional Programming Problem Set 0
CS 3110, Spring 2014 Thursday, January 30
Version: 1 Last Modified: January 24, 2014

Objectives

This optional assignment will help you install an OCaml development environment, and
familiarize you with the basic tools that will be used in the course: a virtual machine, the
Linux command-line interface, and the CS3110 tool. There is nothing to submit—simply
follow the instructions below.

3110 Virtual Machine

We have pre-loaded a Linux virtual machine image with all of the software you will need in
this course as well as a variety of popular text editors and development environments. The
next few exercises will take you through the steps needed to install the virtual machine and
familiarize yourself with it.

Exercise 1:

Download, install, and launch the virtual machine:

(a) Download and install Virtual Box for your operating system:

https://www.virtualbox.org/wiki/Downloads

(b) Download the 3110 virtual machine image:

https://cornell.box.com/s/acqwpvnidu5yq1osd8lb

(c) Import the virtual machine:

• Run VirtualBox

• Select File → Import Appliance

• Select “Open Appliance”, and choose the .ova file you just downloaded. Then click
continue and then click “import”. Note: this step may take some time.

(d) Run the virtual machine:

• Select cs3110-VM from the list

• Click ”Start”

1

https://www.virtualbox.org/wiki/Downloads
https://cornell.box.com/s/acqwpvnidu5yq1osd8lb


Exercise 2:

Familiarize yourself with the virtual machine by performing each of the following tasks.
These controls can be found in the lower left-hand corner of the screen:

(a) Launch a web browser

(b) Open a terminal window

(c) Switch to the second desktop, and launch a terminal window

Shell Basics

In Linux, many tasks can be most efficiently performed using a command-line interface
known as the shell. With the shell, the user types in commands, such as

echo "Hello World"

and the interpreter issues those commands to the operating system, which executes them. A
special program man prints the manual for any command. The lecture notes from CS 2043
Unix Tools and Scripting contain a wealth of information:

http://www.cs.cornell.edu/courses/cs2043/2012sp/

In addition, there are many tutorials available on the web such as:

http://linuxcommand.org/learning_the_shell.php

Exercise 3:

Complete the following tasks using the shell on the virtual machine:

(a) In your home directory, create a directory called projects (hint: use the mkdir command).

(b) Now within the projects directory, create a directory called ps0 (hint: use the cd com-
mand).

(c) Use the echo command to create a file projects/ps0/hw.txt containing the string “hello
world” (hint: use I/O redirection).

(d) Remove the hw.txt file (hint: use the rm command).

(e) Using the commands history and grep, create a file mkdirs.txt in the ps0 directory that
contains all of the mkdir commands you have executed so far.

2

http://www.cs.cornell.edu/courses/cs2043/2012sp/
http://linuxcommand.org/learning_the_shell.php


(f) Use the touch command to create a file output.nosubmit in the ps0 directory.

(g) Use the zip command to create a file ps0.zip in the projects directory. Do not include
the output.nosubmit file. Check that this zip file has the right directory structure and
contents using the zipinfo command.

Text editor

The following text editors are available on the virtual machine:

Emacs (run from the command-line using emacs or xemacs) Emacs supports extensive inte-
gration with a large number of languages and environments. Emacs is powerful and
extensible, but it has a steep learning curve.

Vim (run from the command-line using vim or gvim) Vim is designed for very rapid text
navigation and editing. Vim is also powerful but has a steep learning curve.

Sublime (run from the command-line using subl) A simple text editor with a gentle learning
curve.

Exercise 4:

Familiarize yourself with at least one of the text editors on the virtual machine.

A First Taste of OCaml

OCaml provides two ways to execute programs written in the language: by compiling or
interpreting them. You can interact with the interpreter using the OCaml “toplevel” utop.
It takes a sequence of OCaml expressions, evaluates them, and prints the final result (and
its type).

Exercise 5:

Using utop, determine the values and types for each of the following expressions:

(a) 7 * (1 + 2 + 3)

(b) "cs " ^ string_of_int (310 * 10 + 10)

3



(c) let f x = x ^ "doz"in f "zar"

To exit utop, press ^D (control-D).

Exercise 6:

Navigate to the directory containing the file hello.ml from the release code, start utop again,
and execute the command

#use "hello.ml";;

This interprets the OCaml code within it, and prints the final value. You should see the
following output:

OCaml is awesome!- : unit = ()

CS 3110 Tool

We have written a program cs3110 that simplifies the task of compling, running, and testing
OCaml programs. You will use this program for all problem sets in this course. We will also
use a variant of it for grading.

Exercise 7:

The cs3110 program provides the following commands:

Usage: cs3110 COMMMAND [args]

cs3110 compile <file > Compile file.ml.

cs3110 run <file > Run the program file.ml.

cs3110 test <file > Run the tests in file.ml.

cs3110 clean Removes files created by ’cs3110 compile ’.

cs3110 help Displays this message.

Type cs3110 help and verify that you see the usage message above.

Exercise 8:

Download the ps0.zip from CMS. Move this file into your home directory (or anywhere you
like) and unzip it by typing unzip ps0.zip. This will create a directory ps0 populated with
several subdirectories and folders including this writeup, and starter code.

4



Exercise 9:

Navigate to the ps0/release/grep3110 directory, which contains an OCaml implementation
of a simple search command similar to the built-in grep utility. You can use it to search for
a string in a file. The code for this program is divided between source files file_utils.ml,
regex_utils.ml, and grep3110.ml, and unit test files file_utils_test.ml and regex_utils_test.ml.
To start, let’s compile the main program itself:

cs3110 compile grep3110.ml

Using ls verify that this creates a new directory _build and a binary executable grep3110.d.byte

within that directory.

Exercise 10:

Now let’s run the program on a file containing some text. The directory sample_files contains
several small text files. For example, the file test2.txt contains:

the

quick

brown

fox

jumped

over

the

lazy

dog

Use grep3110 to search for any lines containing the string “fox”:

cs3110 run grep3110 "fox" sample_files/test2.txt

Verify that the output produced by running this command is the following:

Line 4: fox

Exercise 11:

Next, let’s run some unit tests. First, compile the unit tests,

cs3110 compile file_utils_test.ml

cs3110 compile regex_utils_test.ml

and then run them:

5



cs3110 test file_utils_test

cs3110 test regex_utils_test

If all goes well, you should see no output when you run the test commands.

Exercise 12:

Now let’s add another unit test. To make it interesting, we’ll write a test that fails. Add
the following lines at the end of regex_utils_test.ml:

TEST_UNIT "bogus" =

let p = regex_of_string "Haskell" in

let s = "OCaml" in

assert_true (matches p s)

This unit test checks whether the string ”Haskell” occurs in the string ”OCaml”, which is
obviously false. More generally, the syntax TEST_UNIT str = exp where str is any string and
exp is an expression will succeed if exp evaluates to () and throw an exceptions reporting
that the test named str failed:

File "regex_utils_test.ml", line 56, characters 0-110: bogus

threw Assertions.Assert_true("false is not true").

Called from file "lib/runtime.ml", line 227, characters 71-75

Called from file "lib/runtime.ml", line 189, characters 39-45

We will use unit tests often in this course.

Getting Help

This assignment is optional and there is nothing to submit. However, if you need help,
there are many resources available to you. The CS 3110 Piazza site is a great place to ask
questions. Course staff and other students are very active and will typically respond within
a couple hours. Consulting hours are a great place to ask about anything in this assignment
and future assignments, as well as other questions you may have about OCaml or setting up
your environment.

6


