

Measuring the Support of an Itemset

- An itemset A is only interesting if it occurs in a significant number of transactions
- In other words, we want |T(A)| to be "large enough"
- Notation: we use \#(A) to represent |T(A)|; in other words, it's the number of transactions that include all items of itemset A
- The support of itemset A is defined as \#(A) / \#(\varnothing)
- \#(() is just the total number of all transactions
- We say itemset A is supported if support $(A)>s_{0}$ where s_{0} is a constant that the user gets to choose
- s_{0} is typically a small fraction of a percent
- "A is supported" is another way of saying that the items of A appear together in a significant number of transactions

Sets of Items vs. Sets of Transactions

- We are interested in finding sets of related items - those that typically appear together in a shopping cart
- We use lowercase letters (a, b, c) to represent items and uppercase letters (A, B, C) to represent sets of items (itemsets)
- We are also interested in sets of transactions; we use $T(A)$ to represent the set of all transactions that include every item in itemset A
- Note that $A \subseteq B$ implies that $T(A) \supseteq T(B)$
- This is because the more items we have in an itemset the fewer transactions there are that include all the items in the itemset
- Example: there are lots of people who buy Poptarts, but many fewer who buy both Poptarts and lobster

Goal: Find all Supported Itemsets

- Outline of algorithm:
- Choose a set of candidate itemsets
- Run through all the transactions and count how many times each candidate itemset appears
- Itemsets that appear sufficiently often are reported
- This algorithm should work as long as our set of candidate itemsets is not too large
- Strategy 1: Check all possible itemsets
- For 1000 items (not unusually large), there are 2^{1000} subsets
- $2^{1000}=\left(2^{10}\right)^{100} \approx\left(10^{3}\right)^{100}=10^{300}$
- We can't possibly check this many itemsets

4

Finding Supported Itemsets II

- Strategy 2: Check only the itemsets that actually occur
- A single transaction might include, say, 40 items
- We can generate candidate itemsets by looking at subsets of these 40 items; we can do this for each transaction
- Number of subsets (for one typical transaction) $=2^{40}=$ $\left(2^{10}\right)^{4} \approx\left(10^{3}\right)^{4}=10^{12}=1$ trillion
- We can't check this many itemsets either

Finding Supported Itemsets III

- Strategy 3: Build candidate itemsets by adding one item at a time
- Note that itemset $\{a, b, c, d\}$ is supported only if itemset $\{a, b, c\}$ is supported
Δ In other words, once we find an unsupported itemset, adding an additional item will only make it less supported
- Algorithm for finding supported itemsets of size $\mathrm{k}+1$:
Δ Assume we already know L_{k}, the set of all supported itemsets of size k
Δ Generate new candidate itemsets (of size $k+1$) by looking for transactions that contain some $A \in L_{k}$ and then adding one more item to A from that transaction
© Run through all the transactions and count how many times each candidate itemset appears
Δ Report $\mathrm{L}_{\mathrm{k}+1}=$ all candidates that appear sufficiently often

Example: Strategy 4

- Let $L_{3}=\{\{a, b, c\},\{a, b, d\},\{a, c, d\},\{a, c, e\},\{b, c, d\}\}$
- Generated candidates (before pruning):
- $\{a, b, c, d\}$
- $\{a, c, d, e\}$
- Candidates after pruning:
- $\{a, b, c, d\}$
- Note that $\{a, c, d, e\}$ was pruned because $\{a, d, e\}$ is missing from L_{3}
- $\{c, d, e\}$ is also missing from L_{3}

Association Rules	
An association rule has the form $A \rightarrow B$ where A and B are itemsets Each association rule has a confidence factor - This indicates how often the rule appears to have "worked" in the dataset - The confidence factor for $A \rightarrow B$ is defined as - \#($\mathrm{A} \cup \mathrm{B}) /$ / $\#(\mathrm{~A})$ - In other words: Of all the times that A appears in transactions, what fraction also includes the items of B	Example: \{bread, milk\} \rightarrow \{eggs \} The rule is a way of expressing the idea that people who buy bread and milk are likely to also buy eggs Example confidence factor: (the number of transactions involving bread, milk, and eggs) divided by (the number of transactions involving just bread and milk) \#(\{bread, milk, eggs\}) / \#(\{bread, milk\})
9	

Using Association Rules

- For a rule $A \rightarrow B$
A is the antecedent and B is the consequent
- By finding association rules, we can answer useful questions
- Find all rules with Coke as a consequent
- What can done to boost Coke sales?
- Find all rules with bagels in the antecedent
- What products might be affected if bagels are discontinued?
- Find all rules with sausage in the antecedent and mustard as the consequent
- What should be placed near sausage to encourage mustard sales?

Confidence vs. Support

- A rule with a high confidence factor is not necessarily useful
- Example: Suppose there is exactly one transaction that includes both Poptarts and lobster and that transaction also includes pizza
- The confidence factor for $\{$ lobster, Poptarts\} \rightarrow \{pizza\} is \#(\{Poptarts, lobster, pizza\}) / \#(\{Poptarts, lobster\}) = 1
- This rule has high confidence, but low support
- The support for a rule $A \rightarrow B$ is defined as support $(A \rightarrow B)=\operatorname{support}(A \cup B)=\#(A \cup B) / \#(\varnothing)$ 11
- Suppose we already know
- All supported itemsets
- The value of support(C) for each supported itemset C
- Observe that if C is a
supported itemset and
$\mathrm{C}=\mathrm{A} \cup \mathrm{B}$ then
- $A \rightarrow B$ is an association rule that is supported,
- A is supported (so we know support(A)), and
- the confidence factor for $\mathrm{A} \rightarrow \mathrm{B}$ is given by support(C) / support(A)
- Example: suppose the following itemsets are known to have the given support (measured in fractions of a percent)
- 0.3 \{bread\} - 0.25 \{eggs\} - 0.2 \{milk\} - 0.15 \{bread, milk\} - 0.10 \{eggs, milk\} - 0.08 \{bread, eggs\} - 0.05 \{bread, eggs, milk\}
- Find the association rules involving all of bread, eggs, and milk and determine the confidence factor for each rule

