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Transactions

■ Because of barcode 
technology, stores can 
collect data (called 
Market Basket Data) on 
millions of transactions

■ Typically, a transaction 
represents the contents 
of a single shopping cart

■ A “1” in the table 
indicates a particular item 
(column) that is 
purchased as part of a 
particular transaction 
(row)
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thousands of items
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Sets of Items vs. Sets of Transactions

■ We are interested in finding sets of related items – those that 
typically appear together in a shopping cart

■ We use lowercase letters (a, b, c) to represent items and 
uppercase letters (A, B, C) to represent sets of items (itemsets)

■ We are also interested in sets of transactions; we use T(A) to 
represent the set of all transactions that include every item in
itemset A

■ Note that A ⊆ B implies that T(A) ⊇ T(B)

● This is because the more items we have in an itemset the fewer 
transactions there are that include all the items in the itemset

● Example: there are lots of people who buy Poptarts, but many 
fewer who buy both Poptarts and lobster
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Measuring the Support of an Itemset

■ An itemset A is only interesting if it occurs in a significant 
number of transactions

● In other words, we want |T(A)| to be “large enough”
● Notation: we use #(A) to represent |T(A)|; in other words, 

it’s the number of transactions that include all items of 
itemset A

■ The support of itemset A is defined as #(A) / #(∅ )
● #(∅ ) is just the total number of all transactions

■ We say itemset A is supported if support(A) > s0 where s0 is 
a constant that the user gets to choose

● s0 is typically a small fraction of a percent
● “A is supported” is another way of saying that the items of 

A appear together in a significant number of transactions
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Goal: Find all Supported Itemsets

■ Outline of algorithm:
● Choose a set of candidate itemsets
● Run through all the transactions and count how many 

times each candidate itemset appears

● Itemsets that appear sufficiently often are reported
■ This algorithm should work as long as our set of candidate 

itemsets is not too large

■ Strategy 1: Check all possible itemsets
● For 1000 items (not unusually large), there are 21000

subsets
● 21000 = (210)100 ≈ (103)100 = 10300

● We can’t possibly check this many itemsets
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Finding Supported Itemsets II

■ Strategy 2: Check only the itemsets that actually occur

● A single transaction might include, say, 40 items

● We can generate candidate itemsets by looking at 
subsets of these 40 items; we can do this for each 
transaction

● Number of subsets (for one typical transaction) = 240 = 
(210)4 ≈ (103)4 = 1012 = 1 trillion

● We can’t check this many itemsets either

6

Finding Supported Itemsets III

■ Strategy 3: Build candidate itemsets by adding one item at a 
time

● Note that itemset {a, b, c, d} is supported only if itemset 
{a, b, c} is supported

▲ In other words, once we find an unsupported itemset, 
adding an additional item will only make it less supported

● Algorithm for finding supported itemsets of size k+1:
▲ Assume we already know Lk, the set of all supported 

itemsets of size k

▲ Generate new candidate itemsets (of size k+1) by looking 
for transactions that contain some A∈ Lk and then adding 
one more item to A from that transaction

▲ Run through all the transactions and count how many times 
each candidate itemset appears

▲ Report Lk+1 = all candidates that appear sufficiently often
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Finding Supported Itemsets IV

■ Strategy 4: Build 
candidate itemsets 
from subsets

● If {a, b, c, d} is 
supported then 
so are {a, b, c}, 
{a, b, d}, 
{a, c, d}, and 
{b, c, d}

● In other words, 
if any subset is 
unsupported 
then the set is 
unsupported

■ Strategy 4 Algorithm: for finding supported 
itemsets of size k+1

● Assume we already know Lk, the set of all 
supported itemsets of size k; further, 
assume Lk is in lexicographic order

● Generate new candidate itemsets (of size 
k+1) by combining itemsets A and B in Lk

where A and B are chosen such that
▲ A is before B in lexicographic order and

▲ A agrees with B except for the last item

● [Pruning]: Reject a candidate itemset C if 
any size-k subset of C is missing from Lk

● Report Lk+1 = all remaining candidates that 
appear sufficiently often among all the 
transactions
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Example: Strategy 4

■ Let L3 = { {a, b, c}, {a, b, d}, {a, c, d}, {a, c, e}, {b, c, d} }

■ Generated candidates (before pruning):
● {a, b, c, d}

● {a, c, d, e}

■ Candidates after pruning:
● {a, b, c, d}

■ Note that {a, c, d, e} was pruned because {a, d, e} is missing 
from L3

● {c, d, e} is also missing from L3
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Association Rules

■ An association rule has the 
form A→B where A and B are 
itemsets

■ Each association rule has a 
confidence factor

● This indicates how often 
the rule appears to have 
“worked” in the dataset

● The confidence factor for 
A→B is defined as 

▲ #(A∪ B) / #(A)

▲ In other words: Of all the 
times that A appears in 
transactions, what 
fraction also includes the 
items of B

Example:

■ {bread, milk} → {eggs}

■ The rule is a way of 
expressing the idea that 
people who buy bread and 
milk are likely to also buy 
eggs

Example confidence factor: 

■ (the number of transactions 
involving bread, milk, and 
eggs) divided by (the number 
of transactions involving just 
bread and milk)

■ #({bread, milk, eggs}) / 
#({bread, milk})
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Using Association Rules

■ For a rule A→B, 
A is the antecedent and B is the consequent

■ By finding association rules, we can answer useful questions
● Find all rules with Coke as a consequent

▲ What can done to boost Coke sales?

● Find all rules with bagels in the antecedent
▲ What products might be affected if bagels are discontinued?

● Find all rules with sausage in the antecedent and 
mustard as the consequent

▲ What should be placed near sausage to encourage mustard 
sales?
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Confidence vs. Support

■ A rule with a high confidence factor is not necessarily useful
● Example: Suppose there is exactly one transaction that 

includes both Poptarts and lobster and that transaction 
also includes pizza

● The confidence factor for 
{lobster, Poptarts} → {pizza} is
#({Poptarts, lobster, pizza}) / #({Poptarts, lobster}) = 1

● This rule has high confidence, but low support

■ The support for a rule A→B is defined as 
support(A→B) = support(A ∪ B) =  #(A ∪ B) / #(∅ )
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Reporting the Useful Association Rules

■ Suppose we already know

● All supported itemsets

● The value of support(C) for 
each supported itemset C

■ Observe that if C is a 
supported itemset and 
C=A∪ B then 

● A→B is an association rule 
that is supported,

● A is supported (so we 
know support(A)), and

● the confidence factor for 
A→B is given by
support(C) / support(A)

■ Example: suppose the following 
itemsets are known to have the 
given support (measured in 
fractions of a percent)

● 0.3 {bread}

● 0.25 {eggs}

● 0.2 {milk}

● 0.15 {bread, milk}

● 0.10 {eggs, milk}

● 0.08 {bread, eggs}

● 0.05 {bread, eggs, milk}

■ Find the association rules 
involving all of bread, eggs, and 
milk and determine the 
confidence factor for each rule


