
Cubex with List Comprehensions

Ross Tate

December 5, 2013

1 Lexing and Parsing

1.1 Core and Full Languages

comprehension c ::= ∅ | e, c | if (e) c | for (νv in e) c
expression e ::= νv | νvc〈τ, . . . , τ〉(e, . . . , e) | e.νv〈τ, . . . , τ〉(e, . . . , e) | [c] | e++ e | true | false | n | "string"

Figure 1: Changes to the Cubex Core Language Grammar

The extension to the full language differs from the core language in a few ways:

• The symbol ∅ is not in the full language.

• An expression e when used in the full language where a comprehension is expected represents the comprehension e,∅
in the core language.

• The expression [] in the full language represents the expression [∅] in the core language.

2 Validating

The following are the changed typing judgements and rules.

Judgement Meaning Figure
Ψ | Θ | ∆ | Γ ` c : τ comprehension c generates values of type τ 2
Ψ | Θ | ∆ | Γ ` e : τ expression e has type τ 3

Ψ | Θ | ∆ | Γ ` c : τ

Ψ | Θ | ∆ | Γ ` ∅ : τ

Ψ | Θ | ∆ | Γ ` e : τ Ψ | Θ | ∆ | Γ ` c : τ

Ψ | Θ | ∆ | Γ ` e, c : τ

Ψ | Θ | ∆ | Γ ` e : Boolean〈〉 Ψ | Θ | ∆ | Γ ` c : τ

Ψ | Θ | ∆ | Γ ` if (e) c : τ

Ψ | Θ | ∆ | Γ ` e : Iterable〈τ ′〉 Ψ | Θ | ∆ | Γ, ν : τ ′ ` c : τ

Ψ | Θ | ∆ | Γ ` for (ν in e) c : τ

Figure 2: Type Checking Comprehensions

Ψ | Θ | ∆ | Γ ` e : τ

for all i, Ψ | Θ | ∆ | Γ ` ei : τ

Ψ | Θ | ∆ | Γ ` [e1, . . . , en] : Iterable〈τ〉
becomes

Ψ | Θ | ∆ | Γ ` c : τ

Ψ | Θ | ∆ | Γ ` [c] : Iterable〈τ〉

Figure 3: Type Checking Expressions

1

3 Semantics

Any expression [c] should always terminate; that is, the elements of the iterable should be determined lazily. ∅ generates no
values. e, c generates the value of e followed by the values generated by c. if (e) c generates no values if e evaluates to false
and generates all the values generated by c if e evaluates to true. For each element v of iterable e, for (ν in e) c generates
the values generated by c with ν assigned to the value v; this is done lazily so that the comprehension generates values even
if e is an infinite iterable.

If the body of a comprehension refers to a mutable variable, the comprehension should use the value of that variable at
the point in time that the iterable is created.

4 Evaluation

The extension will be evaluated with the same process as PA4, except only testing stages 1 through 3. Note, though, that a
lot of emphasis will be placed on testing the laziness of the generated iterables.

2

