Cubex with List Comprehensions

Ross Tate

December 5, 2013

1 Lexing and Parsing

1.1 Core and Full Languages

comprehension ¢ = @ |e,c|if (e) ¢|for (v, ine) ¢
expression e = vy | Vpe(T, ..., TY(e, ... e) | e (T, ..., T)(e,...,e) | [¢] | e++e]| true | false | n | "string"

Figure 1: Changes to the Cubex Core Language Grammar

The extension to the full language differs from the core language in a few ways:
e The symbol @ is not in the full language.

e An expression e when used in the full language where a comprehension is expected represents the comprehension e, &
in the core language.

e The expression [| in the full language represents the expression [@] in the core language.

2 Validating

The following are the changed typing judgements and rules.

Judgement Meaning Figure
U|O|A|T'Fc:7 comprehension ¢ generates values of type 7 2
U|O©|A|TFe:7 expression e has type 7 3

(U[O[A[TFc:7]

U|O|A|TFe:7 U|O|A|Tkc:T

vV|io|A|ITFD: T U|O|A|Tkec:T
U|©|A|THe:Boolean() Y |O|A|Tkec:T U|O|A|THe:Iterable(r’) U|O|A|T,v:7'Fec:T
U|O|A|THif(e)c:T V| |O|A|TkHfor (vine)c: 7

Figure 2: Type Checking Comprehensions

(U[O[A[The:7]

foralli, Y|O|A|Tke:T UV|O|A|Tkc:T
becomes
U|O|A|TFer,...,e,) : Iterable(r) U|O|A|TFc]: Iterable(r)

Figure 3: Type Checking Expressions

3 Semantics

Any expression [¢] should always terminate; that is, the elements of the iterable should be determined lazily. @ generates no
values. e, c generates the value of e followed by the values generated by c. if (e) ¢ generates no values if e evaluates to false
and generates all the values generated by c if e evaluates to true. For each element v of iterable e, for (v in e) ¢ generates
the values generated by ¢ with v assigned to the value v; this is done lazily so that the comprehension generates values even
if e is an infinite iterable.

If the body of a comprehension refers to a mutable variable, the comprehension should use the value of that variable at
the point in time that the iterable is created.

4 Evaluation

The extension will be evaluated with the same process as PA4, except only testing stages 1 through 3. Note, though, that a
lot of emphasis will be placed on testing the laziness of the generated iterables.

