Systematically exploring control programs (Lecture I)

Ratul Mahajan Microsoft Research

Joint work with Jason Croft, Matt Caesar, and Madan Musuvathi

Control programs are everywhere

From the smallest of networks to the largest

Control programs are everywhere

From the smallest of networks to the largest

The nature of control programs

Collection of rules with triggers and actions

```
motionPorch.Detected:
   if (Now - tLastMotion < 1s
        && lightLevel < 20)
        porchLight.Set(On)
   tLastMotion = Now

@6:00:00 PM:
        porchLight.Set(On)

@6:00:00 AM:
        porchLight.Set(Off)</pre>
```

cache. Remove (entry)

Buggy control programs wreak havoc

One nice morning in the summer

Buggy control programs wreak havoc

"I had a rule that would turn on the heat, disarm the alarm, turn on some lights, etc. at 8am

I came home from vacation to find a warm, inviting, insecure, well lit house that had been that way for a week......

That's just one example, but the point is that it has taken me literally YEARS of these types of mistakes to iron out all the kinks."

Control programs are hard to reason about

motionPorch.Detected:

```
if (Now - timeLastMotion < 1 secs
    && lightMeter.Level < 20)
    porchLight.Set(On);
timeLastMotion = Now;</pre>
```

porchLight.StateChange:

timerPorchLight.Fired:

```
if (Now.Hour > 6AM && Now.Hour < 6PM)
    porchLight.Set(Off);</pre>
```

Large input space

Dependence on time

Rule interaction

9:00 PM

9:04 PM -

Physical

Motion

Lights off

actuation

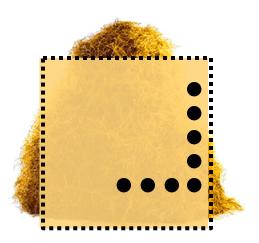
Desirable properties for bug finders

Sound

Complete

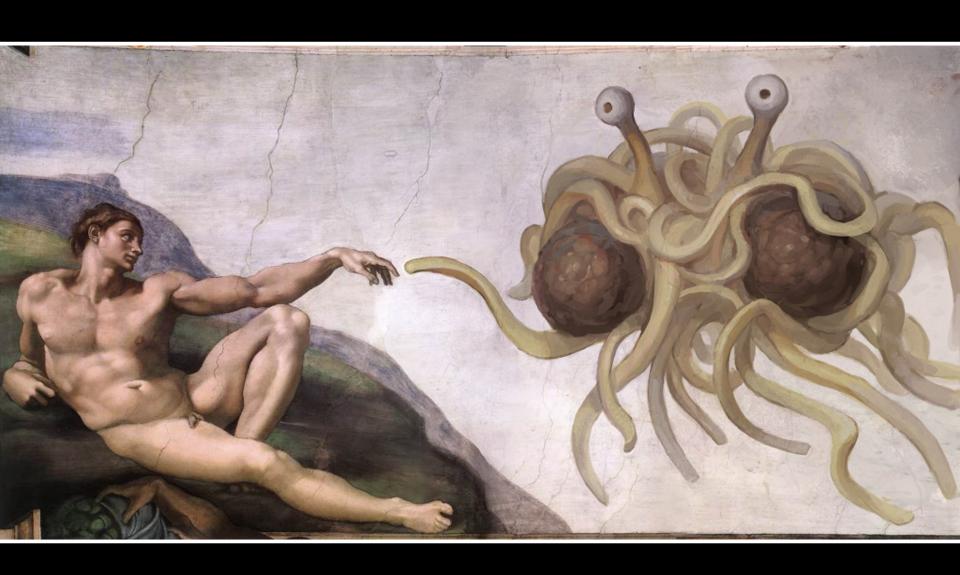
Fast

Two bug finding methods


Testing

Model checking

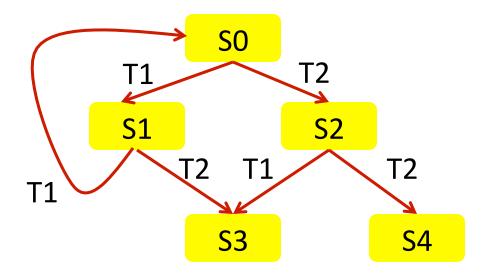
Two threads in model checking



Check code

Model checking code

FSM is the most popular abstraction


TOUCHED BY HIS NOODLY APPENDAGE

Model checking code

FSM is the most popular abstraction

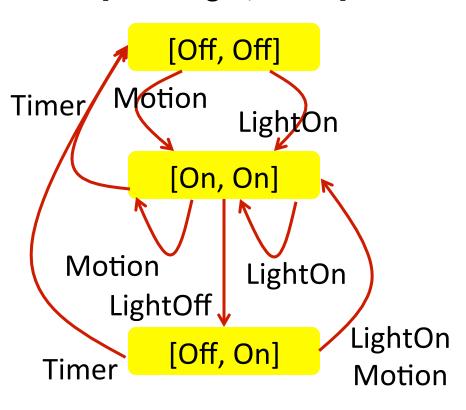
Decide what are "states" and "transitions"

Example

motionPorch:

porchLight.Set(On)

timer.Start(5 mins)


porchLight.On:

timer.Start(5 mins)

timer.Fired:

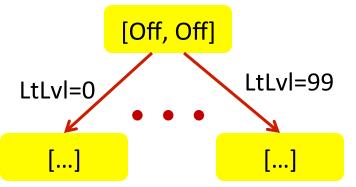
porchLight.Set(Off)

[PorchLight, Timer]

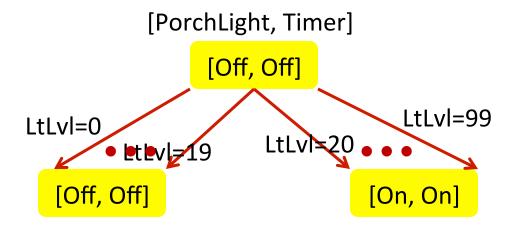
Exploring input space

motionPorch:

```
if (lightLevel < 20)
  porchLight.Set(On)
  timer.Start(10 mins)</pre>
```

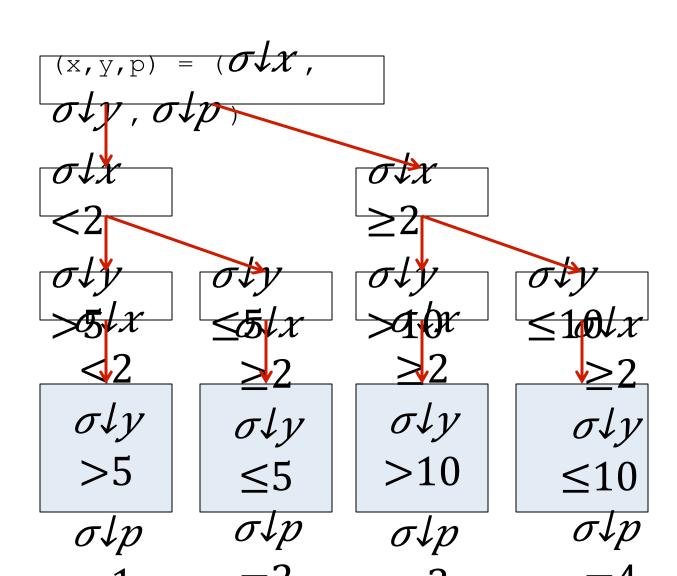

porchLight.On:

timer.Start(5 mins)


timer.Fired:

porchLight.Set(Off)

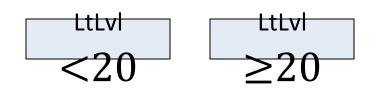
[PorchLight, Timer]



To explore comprehensively, must consider all possible values of input parameters

Symbolic execution

```
if (x < 2)
  if (y > 5)
    p = 1;
  else
    p = 2;
else
 if (y > 10)
    p = 3;
  else
    p = 4;
```

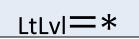


Finding equivalent inputs using symbolic execution

- 1. Symbolically execute each trigger
- 2. Find input ranges that lead to same state


motionPorch:

```
if (lightMeter.level < 20)
  porchLight.Set(On)
  timer.Start(5 mins)</pre>
```



porchLight.On:

timer.Start(5 mins)

timer.Fired:

porchLight.Set(Off)

Finding equivalent inputs using symbolic execution

- 1. Symbolically execute each trigger
- 2. Find input ranges that lead to same state

motionPorch:

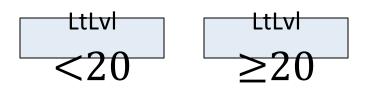
```
x = lightMeter.Level
```

$$\frac{\text{LtLvI}=9}{9}$$

porchLight.On:

```
timer.Start(5 mins)
```

timer.Fired:

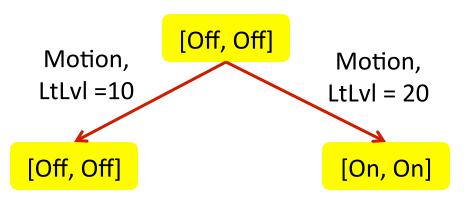

```
porchLight.Set(Off)
```

Efficiently exploring the input space

Pick random values in equivalent classes

motionPorch:

if (lightMeter.level < 20)
 porchLight.Set(On)
 timer.Start(5 mins)</pre>

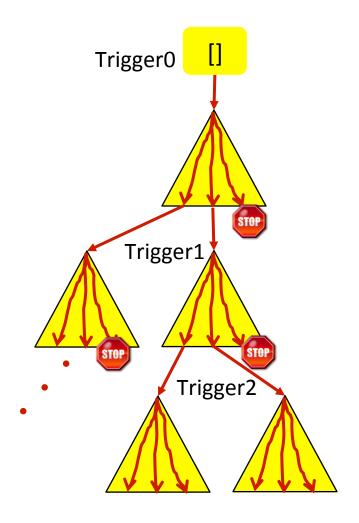


porchLight.On:

timer.Start(5 mins)

timer.Fired:

porchLight.Set(Off)



Use symbolic execution alone?

Symbolic, path-based

Trigger0, Trigger1, Trigger2

Concrete, state-based

Exploring temporal behavior: soundness

motionPorch:

```
porchLight.Set(On)
```

timerDim.Start(5 mins)

timerOff.Start(10 mins)

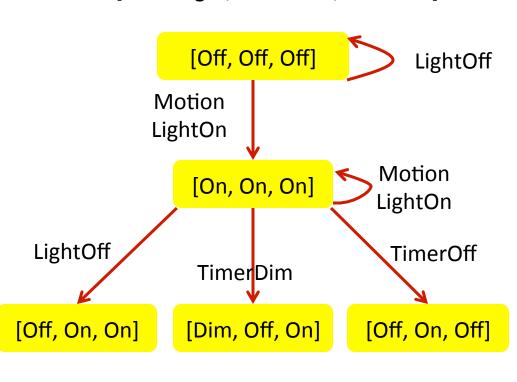
porchLight.On:

```
timerDim.Start(5 mins)
```

timerOff.Start(10 mins)

timerDim.Fired:

porchLight.Set(Dim)


timerOff.Fired:

porchLight.Set(Off)

if timerDim.On()

Abort();

[PorchLight, TimerDim, TimerOff]

Exploring temporal behavior: completeness

motionPorch:

```
if (Now - tLastMotion < 60)
  porchLight.Set(On)
  timer.Start(600)
tLastMotion = Now</pre>
```

porchLight.On:

timer.Start(600)

timer.Fired:

porchLight.Set(Off)

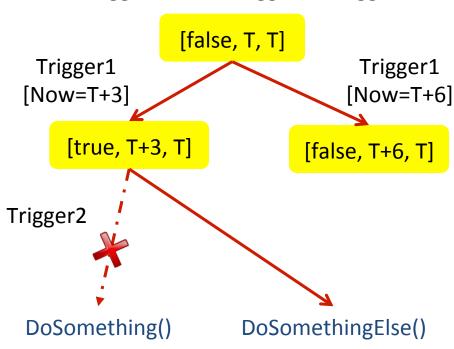
To explore comprehensively, must fire all possible events at all possible times

Trigger0:

```
tTrigger1 = Now
tTrigger2 = Now
trigger1Seen = false
```

Trigger1:

```
if (Now - tTrigger1 < 5)
  trigger1Seen = true


tTrigger1 = Now</pre>
```

Trigger2:

```
if (trigger1Seen)
  if (Now - tTrigger2 < 2)
        DoSomething()
  else</pre>
```

DoSomethingElse()

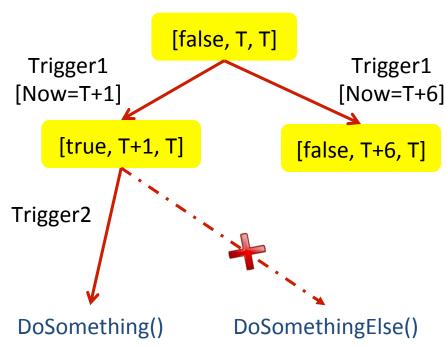
[trigger1Seen, tTrigger1, tTrigger2]

Trigger0:

```
tTrigger1 = Now
tTrigger2 = Now
trigger1Seen = false
```

Trigger1:

```
if (Now - tTrigger1 < 5)
  trigger1Seen = true


tTrigger1 = Now</pre>
```

Trigger2:

```
if (trigger1Seen)
  if (Now - tTrigger2 < 2)
      DoSomething()
  else</pre>
```

DoSomethingElse()

[trigger1Seen, tTrigger1, tTrigger2]

The tyranny of "all possible times"

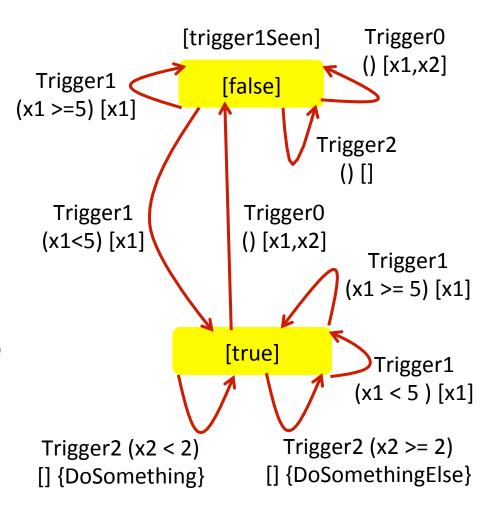
Timed automata

FSM (states, transitions) + the following:

- Finite number of real-values clocks (VCs)
- All VCs progress at the same rate, except that one or more VCs may reset on a transition
- VC constraints gate transitions

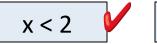
Trigger0:

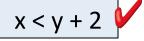
tTrigger1 = Now
tTrigger2 = Now
trigger1Seen = false


Trigger1:

if (Now - tTrigger1 < 5)
 trigger1Seen = true

tTrigger1 = Now</pre>

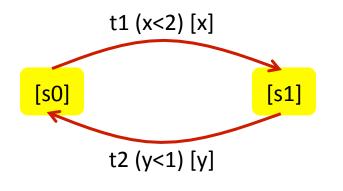

Trigger2:

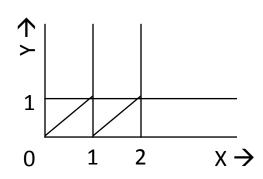

if (trigger1Seen)
 if (Now - tTrigger2 < 2)
 DoSomething()
 else
 DoSomethingElse()</pre>

Properties of timed automata

If VC constraints are such that:

No arithmetic operation involving two VCs


No multiplication operation involving a VC



No irrational constants in constraints

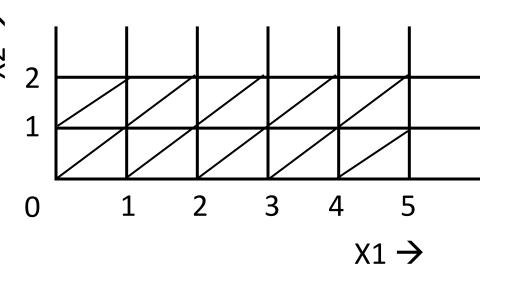
Time can be partitioned into equivalence regions

28 regions

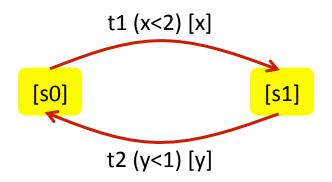
- Corner points (6)
- Line segments (14)
- Spaces (8)

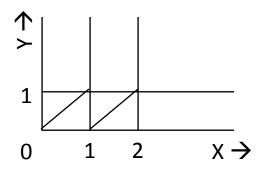
```
Trigger0:
```

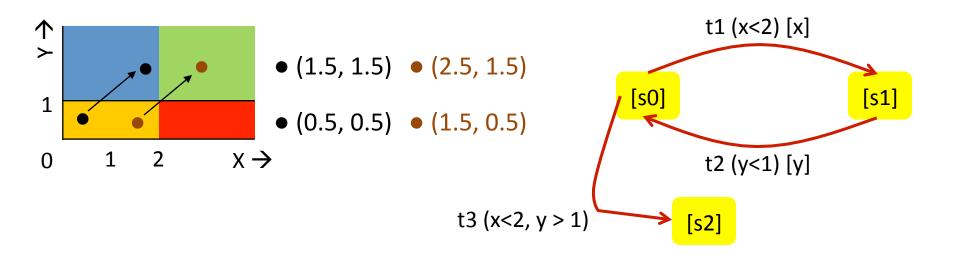
```
tTrigger1 = Now
tTrigger2 = Now
trigger1Seen = false
```


Trigger1:

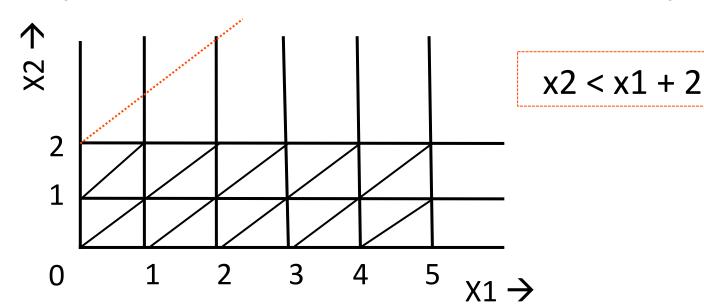
```
if (Now - tTrigger1 < 5)
  trigger1Seen = true
tTrigger1 = Now</pre>
```


Trigger2:


if (trigger1Seen)
 if (Now - tTrigger2 < 2)
 DoSomething()
 else</pre>

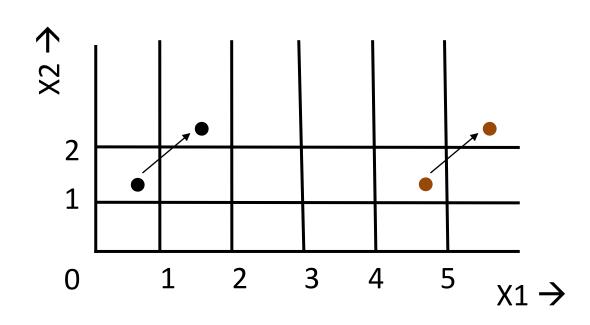

DoSomethingElse()

Why regions are fine-grained

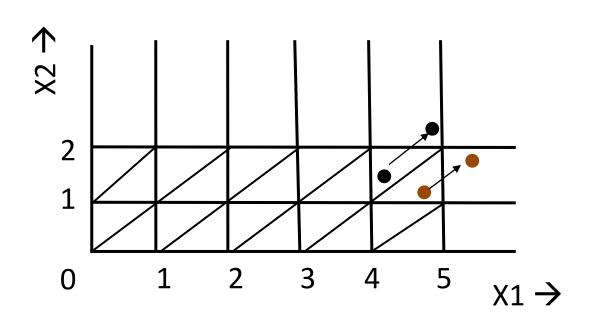

Region construction

If integer constants and simple constraints (e.g., $\mathcal{X} <$ c) Straight lines

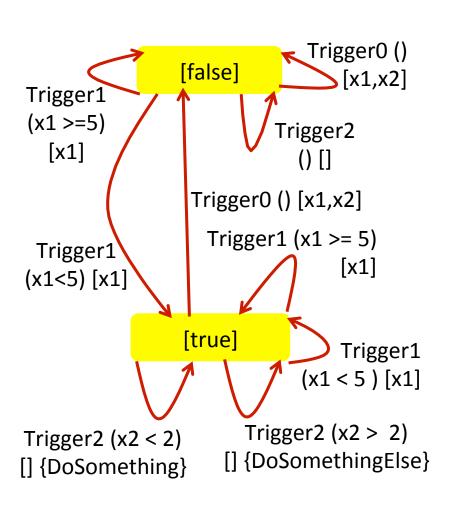
$$\forall x$$
: { $x=c \mid c=0, 1, ...c \downarrow x$ }

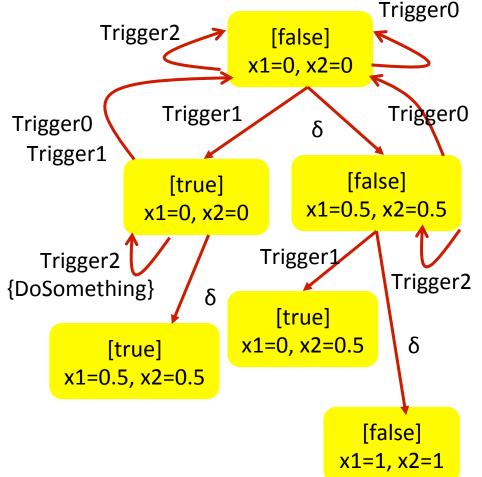

Diagonals lines

$$\forall x,y: \{ fract(x) = fract(y) | x < c \downarrow x, y < c \downarrow y \}$$

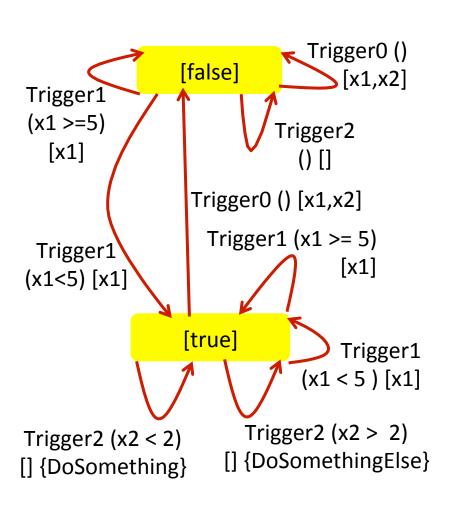

Why this construction works

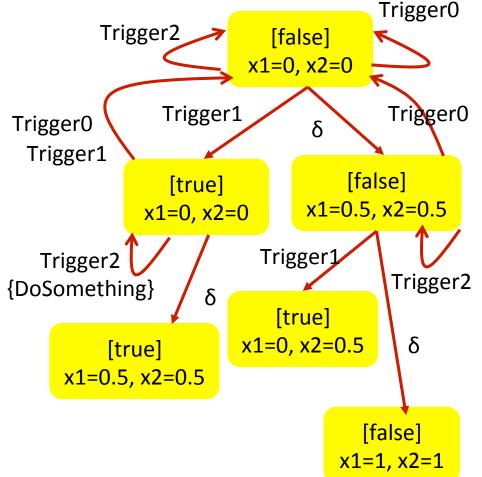
- 2. X2 < 2
- 3. X1 < 5 && X2 > 2




Why this construction works

- 2. X2 < 2
- 3. X1 < 5 && X2 > 2




Exploring a TA

Exploring a TA

Systematically exploring control programs (Lecture II)

Ratul Mahajan Microsoft Research

Joint work with Jason Croft, Matt Caesar, and Madan Musuvathi

Recap: The nature of control programs

Collection of rules with triggers and actions

```
motionPorch.Detected:
   if (Now - tLastMotion < 1s
        && lightLevel < 20)
        porchLight.Set(On)
   tLastMotion = Now

@6:00:00 PM:
        porchLight.Set(On)

@6:00:00 AM:
        porchLight.Set(Off)</pre>
```

packetIn:

CleanupTimer:

```
foreach entry in cache
  if (Now - cache[entry] < 5s)
     cache.Remove(entry)</pre>
```

Recap: Timed automata

FSM (states, transitions) + the following:

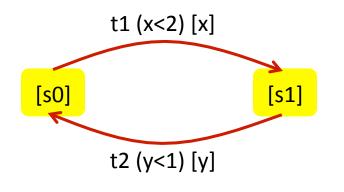
- Finite number of real-values clocks (VCs)
- All VCs progress at the same rate, except that one or more VCs may reset on a transition
- VC constraints gate transitions

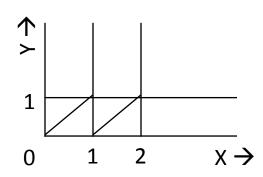
Recap: Properties of timed automata

If VC constraints are such that:

x < y + 2

No arithmetic operation involving two VCs


No multiplication operation involving a VC

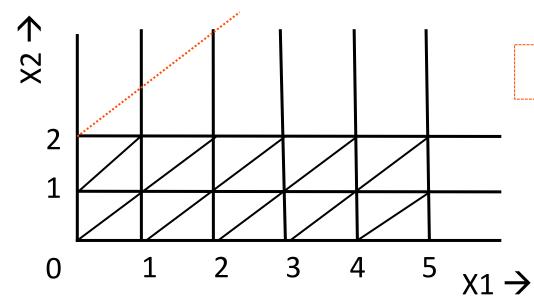


No irrational constants in constraints

Time can be partitioned into equivalence regions

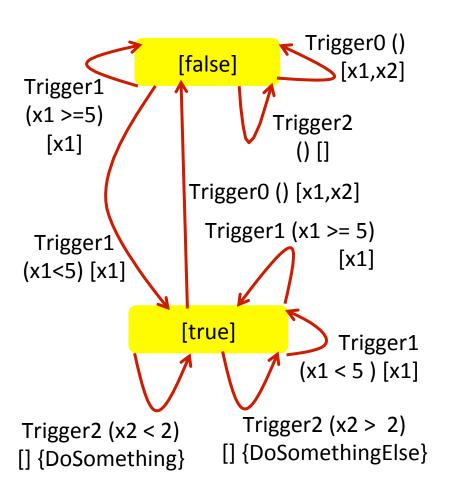
28 regions

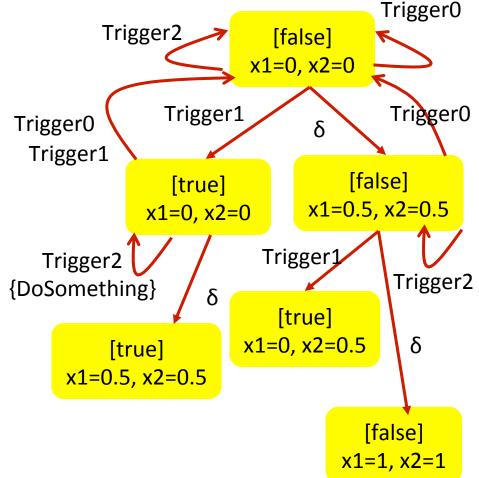
- Corner points (6)
- Line segments (14)
- Spaces (8)


Recap: Region construction

If integer constants and simple constraints (e.g., $\mathcal{X} <$ c) Straight lines

$$\forall x$$
: { $x=c \mid c=0, 1, ...c \downarrow x$ }


Diagonals lines


$$\forall x,y: \{ fract(x) = fract(y) | x < c \downarrow x, y < c \downarrow y \}$$

x2 < x1 + 2

Recap: Exploring a TA

Exploring control programs with TAs

- 1. Mapping time-related activity to VCs
- 2. Model devices
- 3. Construct time regions
- 4. Compute equivalent classes for inputs
- 5. Explore states

Mapping to VCs (1/4): Delay measurers

```
Trigger1:
    ...
    tLast = Now
    ...

Trigger2:
    ...
    if (Now - tLast < 60)
    ...</pre>
```

```
Trigger1:
    ...
    VC_tLast = 0
    ...

Trigger2:
    ...
    if (VC_tLast < 60)
    ...</pre>
```

Mapping to VCs (2/4): Periodic timers

```
timer1.Period = 600
timer1.Event += Timer1Fired
....
Timer1Fired:
....
```

Mapping to VCs (2/4): Delayed actions

```
Trigger1:
    ...
    timer1.Start(600)
    ...

timer1.Fired:
    ...
```

```
Trigger1:
    ...
    VC_timer1 = 0
    ...

VC_timer1 == 600:
    ...
```

Mapping to VCs (4/4): Sleep calls

```
Trigger:
...
Sleep(10)
...
```

Reducing the number of VCs: Combining periodic timers

```
timer1.Period = 600
timer1.Event += Timer1Fired
timer2.Period = 800
timer2.Event += Timer2Fired
Timer1Fired:
Timer2Fired:
```

```
VC timer = 0
VC timer == 600:
VC timer == 800:
 VC timer = 0
```

Reducing the number of VCs: Combining sleep calls

```
Trigger:
    Act1()
    Sleep(5)
    Act2()
    Sleep(10)
    Act3()
```

```
Trigger:
  Act1()
  VC sleeper = 0
  sleep counter = 1;
VC sleeper == 5:
  Act2()
VC sleeper == 15:
  Act3()
```

Modeling devices

Model a device using one of more key value pairs

- Motion sensor: Single key with binary value
- Dimmer: Single key with values in range [0..99]
- Thermostat: Multiple keys

Keys can be notifying or non-notifying

Triggers are used for notifying keys

Queries for values are treated as program inputs

Limitations of device modeling

Values can change arbitrarily

Key value pairs of a device are independent

Different devices are independent

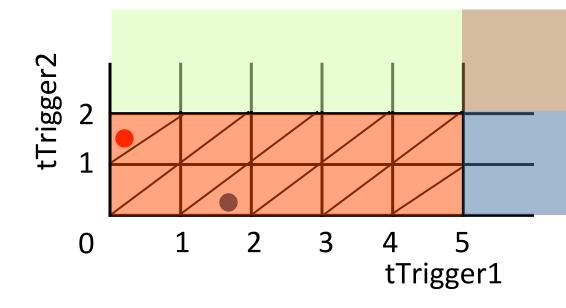
Constructing time regions

- 1. Extract VC constraints using symbolic execution
- 2. Construct time regions using the constraints

```
Trigger0:
  tTrigger1 = Now
  tTrigger2 = Now
  trigger1Seen = false
Trigger1:
  if (Now - tTrigger1 < 5)
    trigger1Seen = true
  tTrigger1 = Now
Trigger2:
  if (trigger1Seen)
     if (Now - tTrigger2 < 2)
        DoSomething()
     else
        DoSomethingElse()
```

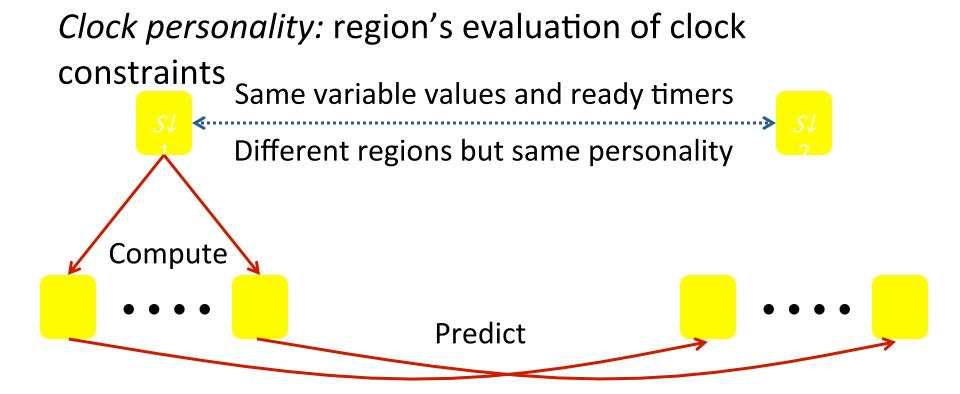
Exploration using TA

Region state = Variables values + VC region + ready timers


```
1. exploredStates = {}
```

- 2. unexploredStates = $\{S\downarrow initial\}$
- 3. While (unexplored States $\neq \phi$)
- 4. SII = PickNext(UnexploredStates)
- 5. **foreach** event in Events, $S \downarrow i$.ReadyTimers
- 6. **foreach** input in Inputs
- 7. SIO = Compute(SII), event, input)
- 8. if $(S \downarrow o \notin exploredStates)$ unexploredStates.Add $(S \downarrow o)$
- 9. if $(S \downarrow i.ReadyTimers = \phi)$
- 10. $S_{IO} = AdvanceRegion(S_{II})$ //also marks ReadyTimers

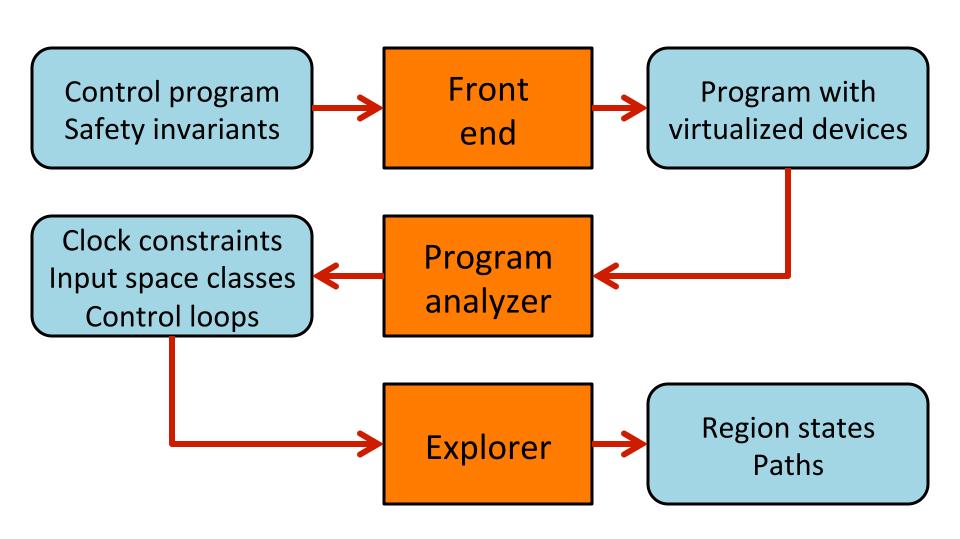
Optimization: Predicting successor states


Observation: Multiple region states can have identical response to a trigger

```
Trigger1:
   if (x1 < 5)
      trigger1Seen = true
   x1= 0
Trigger2:
   if (trigger1Seen)
      if (x2 < 2)
            DoSomething()
      else
            DoSomethingElse()</pre>
```


Optimization: Predicting successor states

Observation: Multiple region states can have identical response to a trigger



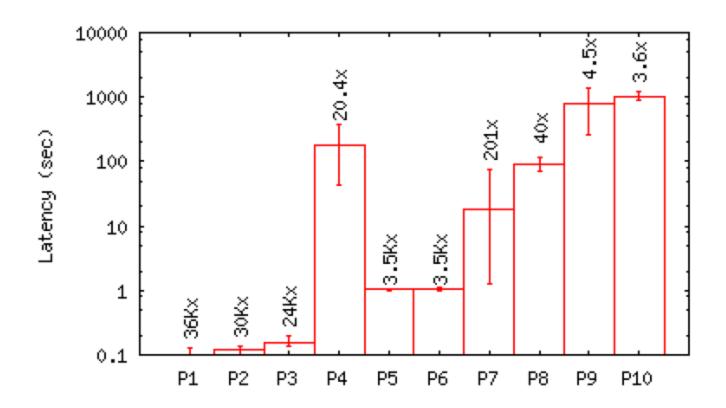
Optimization: Independent control loops

Observation: Control programs tend to have multiple, independent control loops

- 1. Determine independent sets of variables
- 2. Explore independent sets independently

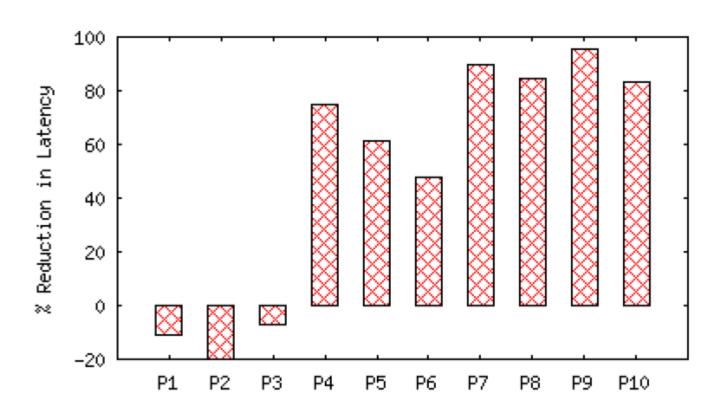
DeLorean

Demo

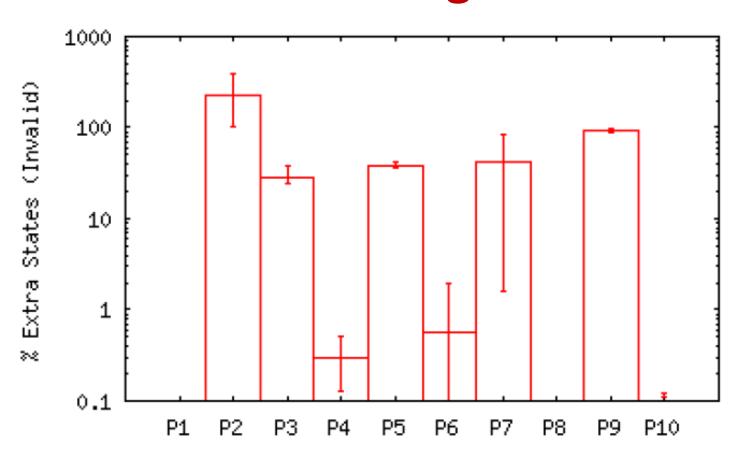

Evaluation on ten real home automation rograms

	type	#rules	#devs	SLoC	#VCs	GCD (s)
P1	OmniPro	6	3	59	2	7200
P2	Elk	3	3	75	2	1800
P3	MiCasaVerde	6	29	143	2	300
P4	Elk	13	20	193	5	5
P5	ActiveHome	35	6	216	14	5
P6	m Control	10	19	221	4	5
P7	OmniIIe	15	27	277	6	60
P8	HomeSeer	21	28	393	10	2
P9	ISY	25	51	462	6	60
P10	ISY	90	39	867	6	10

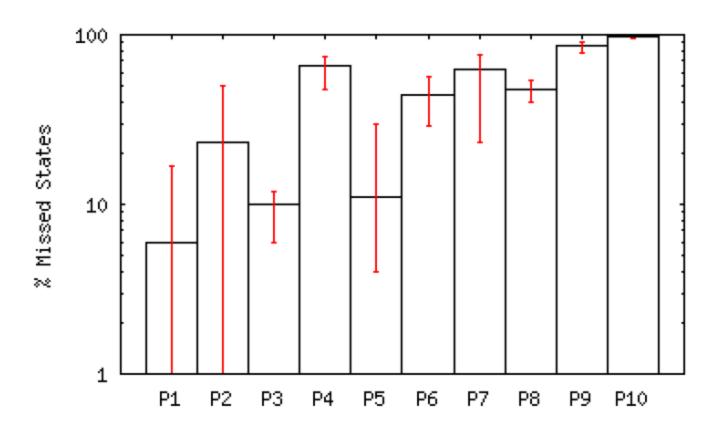
Example bugs


- P9-1: Lights turned on even in the absence of motion
 - Bug in conditional clause: used OR instead of AND
- P9-2: Lights turned off between sunset and 2AM
 - Interaction between rules that turned lights on and off
- P10-1: Dimmer wouldn't turn on despite motion
 - No rule to cover a small time window
- P10-2: One device in a group behaved differently
 - Missing reference to the device in one of the rules

Performance of exploration


Time to "fast forward" the home by one hour

Benefit of successor prediction


Successor prediction yields significant advantage

Comparison with untimed model checking

Untimed model checking reaches many invalid states

Comparison with randomized testing

Random testing misses many valid states

Exploring OpenFlow programs

	#devs	SLoC	#VCs	GCD
MAC-Learning Switch (PySwitch)	2 hosts, 2 sw, 1 ctrl	128	>= 6	1
Web Server Load Balancer	3 hosts, 1 sw, 1 ctrl	1307	>= 4	1
Energy-Efficient Traffic Engineering	3 hosts, 3 sw, 1 ctrl	342	>= 8	2

Additional challenges in OF programs

packetIn:

```
timer = new Timer(5s)
Insert(timer, inPkt.src, inPkt.dst)
```

Dynamically created VCs
Variable number of VCs along different paths

Open problems

Handling communicating control programs

Exploring all possible topologies

Summary

Control programs are tricky to debug

- Interaction between rules
- Large space of inputs
- Intimate dependence on time

These challenges cab be tacked using

- Systematic exploration (model checking)
- Symbolic execution to find equivalent input classes
- Timed automata based exploration (equivalent times)